Department of Neuroradiology, Medical Center, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
Department of Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany.
Clin Neuroradiol. 2022 Mar;32(1):225-230. doi: 10.1007/s00062-021-01099-x. Epub 2021 Oct 19.
To develop a fully automatic algorithm for the magnetic resonance imaging (MRI) identification of patients with spontaneous intracranial hypotension (SIH).
A support vector machine (SVM) was trained with structured reports of 140 patients with clinically suspected SIH. Venous sinuses and basal cisterns were segmented on contrast-enhanced T1-weighted MPRAGE (Magnetization Prepared-Rapid Gradient Echo) sequences using a convolutional neural network (CNN). For the segmented sinuses and cisterns, 56 radiomic features were extracted, which served as input data for the SVM. The algorithm was validated with an independent cohort of 34 patients with proven cerebrospinal fluid (CSF) leaks and 27 patients who had MPRAGE scans for unrelated reasons.
The venous sinuses and the suprasellar cistern had the best discriminative power to separate SIH and non-SIH patients. On a combined score with 2 points, mean SVM score was 1.41 (±0.60) for the SIH and 0.30 (±0.53) for the non-SIH patients (p < 0.001). Area under the curve (AUC) was 0.91.
A fully automatic algorithm analyzing a single MRI sequence separates SIH and non-SIH patients with a high diagnostic accuracy. It may help to consider the need of invasive diagnostics and transfer to a SIH center.
开发一种用于磁共振成像(MRI)识别自发性颅内低血压(SIH)患者的全自动算法。
使用 140 例临床疑似 SIH 患者的结构化报告对支持向量机(SVM)进行训练。使用卷积神经网络(CNN)对对比增强 T1 加权 MPRAGE(磁化准备快速梯度回波)序列上的静脉窦和基底池进行分割。对于分割的窦和池,提取了 56 个放射组学特征,作为 SVM 的输入数据。该算法通过经证实的脑脊液(CSF)漏的 34 例患者和因无关原因进行 MPRAGE 扫描的 27 例患者的独立队列进行验证。
静脉窦和鞍上池对区分 SIH 和非 SIH 患者具有最佳的判别能力。在 2 分的综合评分中,SIH 患者的平均 SVM 评分为 1.41(±0.60),非 SIH 患者为 0.30(±0.53)(p<0.001)。曲线下面积(AUC)为 0.91。
分析单个 MRI 序列的全自动算法可以以较高的诊断准确性区分 SIH 和非 SIH 患者。它可能有助于考虑进行有创诊断的必要性,并将患者转至 SIH 中心。