Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K.
Centre for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
Clin Sci (Lond). 2021 Oct 29;135(20):2429-2444. doi: 10.1042/CS20210643.
Osteogenic factors, such as osteoprotegerin (OPG), are protective against vascular calcification. However, OPG is also positively associated with cardiovascular damage, particularly in pulmonary hypertension, possibly through processes beyond effects on calcification. In the present study, we focused on calcification-independent vascular effects of OPG through activation of syndecan-1 and NADPH oxidases (Noxs) 1 and 4. Isolated resistance arteries from Wistar-Kyoto (WKY) rats, exposed to exogenous OPG, studied by myography exhibited endothelial and smooth muscle dysfunction. OPG decreased nitric oxide (NO) production, eNOS activation and increased reactive oxygen species (ROS) production in endothelial cells. In VSMCs, OPG increased ROS production, H2O2/peroxynitrite levels and activation of Rho kinase and myosin light chain. OPG vascular and redox effects were also inhibited by the syndecan-1 inhibitor synstatin (SSNT). Additionally, heparinase and chondroitinase abolished OPG effects on VSMCs-ROS production, confirming syndecan-1 as OPG molecular partner and suggesting that OPG binds to heparan/chondroitin sulphate chains of syndecan-1. OPG-induced ROS production was abrogated by NoxA1ds (Nox1 inhibitor) and GKT137831 (dual Nox1/Nox4 inhibitor). Tempol (SOD mimetic) inhibited vascular dysfunction induced by OPG. In addition, we studied arteries from Nox1 and Nox4 knockout (KO) mice. Nox1 and Nox4 KO abrogated OPG-induced vascular dysfunction. Vascular dysfunction elicited by OPG is mediated by a complex signalling cascade involving syndecan-1, Nox1 and Nox4. Our data identify novel molecular mechanisms beyond calcification for OPG, which may underlie vascular injurious effects of osteogenic factors in conditions such as hypertension and/or diabetes.
成骨因子,如护骨素(OPG),可防止血管钙化。然而,OPG 也与心血管损伤呈正相关,尤其是在肺动脉高压中,其可能通过对钙化的影响以外的机制发挥作用。在本研究中,我们通过激活 syndecan-1 和 NADPH 氧化酶(Noxs)1 和 4,关注 OPG 对血管的非钙化依赖性作用。从 Wistar-Kyoto(WKY)大鼠中分离出的阻力血管,在肌动图上观察到外源性 OPG 暴露后,内皮和血管平滑肌功能障碍。OPG 降低了内皮细胞中一氧化氮(NO)的产生、内皮型一氧化氮合酶(eNOS)的激活和活性氧(ROS)的产生。在血管平滑肌细胞(VSMCs)中,OPG 增加了 ROS 的产生、H2O2/过氧亚硝酸盐的水平以及 Rho 激酶和肌球蛋白轻链的激活。 Syndecan-1 抑制剂 synstatin(SSNT)也抑制了 OPG 的血管和氧化还原作用。此外,肝素酶和软骨素酶消除了 OPG 对 VSMCs-ROS 产生的作用,证实了 syndecan-1 是 OPG 的分子伴侣,并表明 OPG 与 syndecan-1 的肝素/硫酸软骨素链结合。NoxA1ds(Nox1 抑制剂)和 GKT137831(双重 Nox1/Nox4 抑制剂)阻断了 OPG 诱导的 ROS 产生。Tempol(SOD 模拟物)抑制了 OPG 诱导的血管功能障碍。此外,我们研究了 Nox1 和 Nox4 基因敲除(KO)小鼠的动脉。Nox1 和 Nox4 KO 消除了 OPG 诱导的血管功能障碍。OPG 引起的血管功能障碍是由涉及 syndecan-1、Nox1 和 Nox4 的复杂信号级联介导的。我们的数据确定了 OPG 的新分子机制,这些机制可能是成骨因子在高血压和/或糖尿病等情况下引起血管损伤的基础。