Chen Lumin, Yu Houyong, Li Ziheng, Chen Xiang, Zhou Wenlong
National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Nanoscale. 2021 Nov 4;13(42):17837-17845. doi: 10.1039/d1nr04838d.
Carbon materials are highly promising electrode materials for supercapacitors, due to their hierarchical porous structure and large specific surface area. However, the limited specific capacitance and inferior rate capability significantly prevent their practical application. Herein, 3D interconnected hierarchical porous carbon aerogels (CNFAs) through engineering the pyrolysis chemistry of CNF are developed. The obtained CNFAs effectively improve the carbon yield and suppress the volume shrinkage, as well as have robust mechanical properties. As a supercapacitor electrode, the CNFAs-17% electrode exhibits an ultrahigh capacitance of 440.29 F g at 1 A g, significantly superior to most reported biomass-based carbon materials. Moreover, the CNFAs-17% assembled symmetric supercapacitor (SSC) achieves an outstanding rate capability (63.29% at 10 mA cm), high areal energy density (0.081 mWh cm), and remarkable cycling stability (nearly 100% capacitance retention after 7000 cycles). This work offers a simple, effective strategy towards the preparation of promising electrode materials for high-performance energy storage applications.
碳材料因其分级多孔结构和大比表面积,是极具潜力的超级电容器电极材料。然而,有限的比电容和较差的倍率性能严重阻碍了它们的实际应用。在此,通过调控碳纳米纤维(CNF)的热解化学过程,制备了三维互连分级多孔碳气凝胶(CNFAs)。所制备的CNFAs有效地提高了碳产率并抑制了体积收缩,同时具有优异的机械性能。作为超级电容器电极,CNFAs-17%电极在1 A g时表现出440.29 F g的超高电容,显著优于大多数已报道的生物质基碳材料。此外,由CNFAs-17%组装的对称超级电容器(SSC)具有出色的倍率性能(在10 mA cm时为63.29%)、高面积能量密度(0.081 mWh cm)和卓越的循环稳定性(7000次循环后电容保持率接近100%)。这项工作为制备用于高性能储能应用的有前景的电极材料提供了一种简单有效的策略。