Andrianarivelo Andry, Saint-Jour Estefani, Pousinha Paula, Fernandez Sebastian P, Petitbon Anna, De Smedt-Peyrusse Veronique, Heck Nicolas, Ortiz Vanesa, Allichon Marie-Charlotte, Kappès Vincent, Betuing Sandrine, Walle Roman, Zhu Ying, Joséphine Charlène, Bemelmans Alexis-Pierre, Turecki Gustavo, Mechawar Naguib, Javitch Jonathan A, Caboche Jocelyne, Trifilieff Pierre, Barik Jacques, Vanhoutte Peter
CNRS, UMR 8246, Neuroscience Paris Seine, F-75005 Paris, France.
INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, F-75005 Paris, France.
Sci Adv. 2021 Oct 22;7(43):eabg5970. doi: 10.1126/sciadv.abg5970. Epub 2021 Oct 20.
Addictive drugs increase dopamine in the nucleus accumbens (NAc), where it persistently shapes excitatory glutamate transmission and hijacks natural reward processing. Here, we provide evidence, from mice to humans, that an underlying mechanism relies on drug-evoked heteromerization of glutamate -methyl-d-aspartate receptors (NMDAR) with dopamine receptor 1 (D1R) or 2 (D2R). Using temporally controlled inhibition of D1R-NMDAR heteromerization, we unraveled their selective implication in early phases of cocaine-mediated synaptic, morphological, and behavioral responses. In contrast, preventing D2R-NMDAR heteromerization blocked the persistence of these adaptations. Interfering with these heteromers spared natural reward processing. Notably, we established that D2R-NMDAR complexes exist in human samples and showed that, despite a decreased D2R protein expression in the NAc, individuals with psychostimulant use disorder display a higher proportion of D2R forming heteromers with NMDAR. These findings contribute to a better understanding of molecular mechanisms underlying addiction and uncover D2R-NMDAR heteromers as targets with potential therapeutic value.
成瘾性药物会增加伏隔核(NAc)中的多巴胺,多巴胺在该区域持续影响兴奋性谷氨酸传递,并扰乱自然奖赏处理过程。在此,我们提供了从小鼠到人类的证据,表明一种潜在机制依赖于药物诱发的谷氨酸 - 甲基 - d - 天冬氨酸受体(NMDAR)与多巴胺受体1(D1R)或2(D2R)的异聚化。通过对D1R - NMDAR异聚化进行时间控制抑制,我们揭示了它们在可卡因介导的突触、形态和行为反应早期阶段的选择性作用。相比之下,阻止D2R - NMDAR异聚化则会阻断这些适应性变化的持续性。干扰这些异聚体不会影响自然奖赏处理。值得注意的是,我们证实了人类样本中存在D2R - NMDAR复合物,并表明,尽管NAc中D2R蛋白表达降低,但患有精神兴奋剂使用障碍的个体中,与NMDAR形成异聚体的D2R比例更高。这些发现有助于更好地理解成瘾背后的分子机制,并揭示D2R - NMDAR异聚体作为具有潜在治疗价值的靶点。