Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2110934118.
In Parkinson's disease (PD), the loss of midbrain dopaminergic cells results in severe locomotor deficits, such as gait freezing and akinesia. Growing evidence indicates that these deficits can be attributed to the decreased activity in the mesencephalic locomotor region (MLR), a brainstem region controlling locomotion. Clinicians are exploring the deep brain stimulation of the MLR as a treatment option to improve locomotor function. The results are variable, from modest to promising. However, within the MLR, clinicians have targeted the pedunculopontine nucleus exclusively, while leaving the cuneiform nucleus unexplored. To our knowledge, the effects of cuneiform nucleus stimulation have never been determined in parkinsonian conditions in any animal model. Here, we addressed this issue in a mouse model of PD, based on the bilateral striatal injection of 6-hydroxydopamine, which damaged the nigrostriatal pathway and decreased locomotor activity. We show that selective optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus in mice expressing channelrhodopsin in a Cre-dependent manner in Vglut2-positive neurons (Vglut2-ChR2-EYFP mice) increased the number of locomotor initiations, increased the time spent in locomotion, and controlled locomotor speed. Using deep learning-based movement analysis, we found that the limb kinematics of optogenetic-evoked locomotion in pathological conditions were largely similar to those recorded in intact animals. Our work identifies the glutamatergic neurons of the cuneiform nucleus as a potentially clinically relevant target to improve locomotor activity in parkinsonian conditions. Our study should open avenues to develop the targeted stimulation of these neurons using deep brain stimulation, pharmacotherapy, or optogenetics.
在帕金森病(PD)中,中脑多巴胺能细胞的丧失导致严重的运动缺陷,如步态冻结和运动不能。越来越多的证据表明,这些缺陷可归因于控制运动的脑干区域中脑运动区(MLR)的活性降低。临床医生正在探索 MLR 的深部脑刺激作为改善运动功能的治疗选择。结果各不相同,从适度到有希望。然而,在 MLR 中,临床医生仅将被盖桥核作为目标,而未探索楔状核。据我们所知,在任何动物模型中,从未在帕金森病条件下确定过楔状核刺激的效果。在这里,我们在基于双侧纹状体注射 6-羟多巴胺的 PD 小鼠模型中解决了这个问题,该模型破坏了黑质纹状体通路并降低了运动活性。我们表明,在以 Cre 依赖性方式在 Vglut2 阳性神经元中表达通道视紫红质的小鼠中,选择性光遗传学刺激楔状核中的谷氨酸能神经元(表达 Vglut2-ChR2-EYFP 的小鼠)增加了运动起始的次数,增加了运动时间,并控制了运动速度。使用基于深度学习的运动分析,我们发现,光遗传学诱发运动在病理条件下的肢体运动学与在完整动物中记录的肢体运动学非常相似。我们的工作确定楔状核的谷氨酸能神经元是一种有潜在临床意义的靶点,可以改善帕金森病条件下的运动活性。我们的研究应该为使用深部脑刺激、药物治疗或光遗传学靶向刺激这些神经元开辟途径。