Rahim Warda, Skelton Jonathan M, Scanlon David O
Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
Thomas Young Centre, University College London Gower Street London WC1E 6BT UK.
J Mater Chem A Mater. 2021 Aug 2;9(36):20417-20435. doi: 10.1039/d1ta03649a. eCollection 2021 Sep 21.
The environmental burden of fossil fuels and the rising impact of global warming have created an urgent need for sustainable clean energy sources. This has led to widespread interest in thermoelectric (TE) materials to recover part of the ∼60% of global energy currently wasted as heat as usable electricity. Oxides are particularly attractive as they are thermally stable, chemically inert, and formed of earth-abundant elements, but despite intensive efforts there have been no reports of oxide TEs matching the performance of flagship chalcogenide materials such as PbTe, BiTe and SnSe. A number of ternary XYZ mixed-anion systems, including oxides, have predicted band gaps in the useful range for several renewable-energy applications, including as TEs, and some also show the complex crystal structures indicative of low lattice thermal conductivity. In this study, we use calculations to investigate the TE performance of two structurally-similar mixed-anion oxypnictides, CaSbO and CaBiO. Electronic-structure and band-alignment calculations using hybrid density-functional theory (DFT), including spin-orbit coupling, suggest that both materials are likely to be p-type dopable with large charge-carrier mobilities. Lattice-dynamics calculations using third-order perturbation theory predict ultra-low lattice thermal conductivities of ∼0.8 and ∼0.5 W m K above 750 K. Nanostructuring to a crystal grain size of 20 nm is predicted to further reduce the room temperature thermal conductivity by around 40%. Finally, we use the electronic- and thermal-transport calculations to estimate the thermoelectric figure of merit , and show that with p-type doping both oxides could potentially serve as promising earth-abundant oxide TEs for high-temperature applications.
化石燃料带来的环境负担以及全球变暖影响的不断加剧,使得对可持续清洁能源的需求变得迫切。这引发了人们对热电(TE)材料的广泛关注,以回收目前约60%作为热量浪费的全球能源中的一部分,使其转化为可用电力。氧化物尤其具有吸引力,因为它们热稳定、化学惰性且由储量丰富的元素构成,但尽管付出了巨大努力,仍未有关于氧化物热电材料性能能与诸如PbTe、BiTe和SnSe等旗舰硫族化物材料相媲美的报道。包括氧化物在内的许多三元XYZ混合阴离子体系,在包括热电材料在内的几种可再生能源应用的有用范围内预测出了带隙,并且一些体系还展现出了表明低晶格热导率的复杂晶体结构。在本研究中,我们使用计算来研究两种结构相似的混合阴离子氧族氮化物CaSbO和CaBiO的热电性能。使用包括自旋轨道耦合的杂化密度泛函理论(DFT)进行的电子结构和能带排列计算表明,这两种材料都可能是p型可掺杂的,且具有较大的电荷载流子迁移率。使用三阶微扰理论进行的晶格动力学计算预测,在750 K以上,晶格热导率超低,分别约为0.8和0.5 W m⁻¹ K⁻¹。预测将晶粒尺寸纳米结构化至20 nm可使室温热导率进一步降低约40%。最后,我们使用电子和热输运计算来估计热电品质因数,并表明通过p型掺杂,这两种氧化物都有可能成为用于高温应用的有前景的储量丰富的氧化物热电材料。