Gayner Chhatrasal, Menezes Luke T, Natanzon Yuriy, Kauffmann Yaron, Kleinke Holger, Amouyal Yaron
Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
ACS Appl Mater Interfaces. 2023 Mar 15;15(10):13012-13024. doi: 10.1021/acsami.2c21561. Epub 2023 Mar 6.
Nanostructuring of thermoelectric (TE) materials leads to improved energy conversion performance; however, it requires a perfect fit between the nanoprecipitates' chemistry and crystal structure and those of the matrix. We synthesize bulk BiTe from molecular precursors and characterize their structure and chemistry using electron microscopy and analyze their TE transport properties in the range of 300-500 K. We find that synthesis from BiO + NaTeO precursors results in n-type BiTe containing a high number density ( ∼ 2.45 × 10 m) of Te-nanoprecipitates decorating the BiTe grain boundaries (GBs), which yield enhanced TE performance with a power factor (PF) of ∼19 μW cm K at 300 K. First-principles calculations validate the role of Te/BiTe interfaces in increasing the charge carrier concentration, density of states, and electrical conductivity. These optimized TE coefficients yield a promising TE figure of merit () peak value of 1.30 at 450 K and an average of 1.14 from 300 to 500 K. This is one of the cutting-edge values recorded for n-type BiTe produced by chemical routes. We believe that this chemical synthesis strategy will be beneficial for future development of scalable n-type BiTe based devices.
热电(TE)材料的纳米结构化可提高能量转换性能;然而,这需要纳米析出物的化学性质和晶体结构与基体的化学性质和晶体结构完美匹配。我们从分子前驱体合成了块状BiTe,并使用电子显微镜对其结构和化学性质进行了表征,并分析了它们在300 - 500 K范围内的TE输运性质。我们发现,由BiO + NaTeO前驱体合成的n型BiTe含有高密度(约2.45×10 m)的Te纳米析出物,这些析出物修饰了BiTe的晶界(GBs),在300 K时产生了增强的TE性能,功率因子(PF)约为19 μW cm K。第一性原理计算验证了Te/BiTe界面在增加载流子浓度、态密度和电导率方面的作用。这些优化的TE系数在450 K时产生了有前景的热电优值()峰值1.30,在300至500 K范围内的平均为1.14。这是通过化学路线生产的n型BiTe所记录的前沿值之一。我们相信,这种化学合成策略将有利于未来基于n型BiTe的可扩展器件的开发。