Sardo Mariana, Afonso Rui, Juźków Joanna, Pacheco Marlene, Bordonhos Marta, Pinto Moisés L, Gomes José R B, Mafra Luís
CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal.
J Mater Chem A Mater. 2021 Jan 8;9(9):5542-5555. doi: 10.1039/d0ta09808f. eCollection 2021 Mar 9.
This work entails a comprehensive solid-state NMR and computational study of the influence of water and CO partial pressures on the CO-adducts formed in amine-grafted silica sorbents. Our approach provides atomic level insights on hypothesised mechanisms for CO capture under dry and wet conditions in a tightly controlled atmosphere. The method used for sample preparation avoids the use of liquid water slurries, as performed in previous studies, enabling a molecular level understanding, by NMR, of the influence of controlled amounts of water vapor (down to 0.7 kPa) in CO chemisorption processes. Details on the formation mechanism of moisture-induced CO species are provided aiming to study CO : HO binary mixtures in amine-grafted silica sorbents. The interconversion between distinct chemisorbed CO species was quantitatively monitored by NMR under wet and dry conditions in silica sorbents grafted with amines possessing distinct bulkiness (primary and tertiary). Particular attention was given to two distinct carbonyl environments resonating at ∼161 and 155 ppm, as their presence and relative intensities are greatly affected by moisture depending on the experimental conditions. 1D and 2D NMR spectral assignments of both these C resonances were assisted by density functional theory calculations of H and C chemical shifts on model structures of alkylamines grafted onto the silica surface that validated various hydrogen-bonded CO species that may occur upon formation of bicarbonate, carbamic acid and alkylammonium carbamate ion pairs. Water is a key component in flue gas streams, playing a major role in CO speciation, and this work extends the current knowledge on chemisorbed CO structures and their stabilities under dry/wet conditions, on amine-modified solid surfaces.
这项工作涉及对水和一氧化碳分压对胺接枝二氧化硅吸附剂中形成的一氧化碳加合物影响的全面固态核磁共振和计算研究。我们的方法为在严格控制的气氛中干燥和潮湿条件下捕获一氧化碳的假设机制提供了原子水平的见解。用于样品制备的方法避免了使用液态水浆料,如先前研究中所做的那样,从而能够通过核磁共振从分子水平了解可控量的水蒸气(低至0.7 kPa)在一氧化碳化学吸附过程中的影响。提供了关于水分诱导的一氧化碳物种形成机制的详细信息,旨在研究胺接枝二氧化硅吸附剂中的一氧化碳:水二元混合物。在接枝有不同体积(伯胺和叔胺)胺的二氧化硅吸附剂中,通过核磁共振在潮湿和干燥条件下定量监测不同化学吸附的一氧化碳物种之间的相互转化。特别关注了在约161和155 ppm处共振的两种不同的羰基环境,因为它们的存在和相对强度在不同实验条件下会受到水分的极大影响。这两种碳共振的一维和二维核磁共振光谱归属通过对接枝到二氧化硅表面的烷基胺模型结构上的氢和碳化学位移的密度泛函理论计算得到辅助,该计算验证了在形成碳酸氢盐、氨基甲酸和烷基氨基甲酸盐离子对时可能出现的各种氢键结合的一氧化碳物种。水是烟道气流中的关键成分,在一氧化碳形态形成中起主要作用,这项工作扩展了目前关于胺改性固体表面上化学吸附的一氧化碳结构及其在干/湿条件下稳定性的知识。