文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Ensemble Learning-Based Pulse Signal Recognition: Classification Model Development Study.

作者信息

Yan Jianjun, Cai Xianglei, Chen Songye, Guo Rui, Yan Haixia, Wang Yiqin

机构信息

Institute of Intelligent Perception and Diagnosis, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.

Shanghai Key Laboratory of Health Identification and Assessment, Laboratory of Traditional Chinese Medicine for Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

出版信息

JMIR Med Inform. 2021 Oct 21;9(10):e28039. doi: 10.2196/28039.


DOI:10.2196/28039
PMID:34673537
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8569546/
Abstract

BACKGROUND: In pulse signal analysis and identification, time domain and time frequency domain analysis methods can obtain interpretable structured data and build classification models using traditional machine learning methods. Unstructured data, such as pulse signals, contain rich information about the state of the cardiovascular system, and local features of unstructured data can be extracted and classified using deep learning. OBJECTIVE: The objective of this paper was to comprehensively use machine learning and deep learning classification methods to fully exploit the information about pulse signals. METHODS: Structured data were obtained by using time domain and time frequency domain analysis methods. A classification model was built using a support vector machine (SVM), a deep convolutional neural network (DCNN) kernel was used to extract local features of the unstructured data, and the stacking method was used to fuse the above classification results for decision making. RESULTS: The highest average accuracy of 0.7914 was obtained using only a single classifier, while the average accuracy obtained using the ensemble learning approach was 0.8330. CONCLUSIONS: Ensemble learning can effectively use information from structured and unstructured data to improve classification accuracy through decision-level fusion. This study provides a new idea and method for pulse signal classification, which is of practical value for pulse diagnosis objectification.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/7bbabcfaf073/medinform_v9i10e28039_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/e0a5b622c235/medinform_v9i10e28039_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/7fef6c4ba01c/medinform_v9i10e28039_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/c9bede6d47e0/medinform_v9i10e28039_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/7dc1448d965a/medinform_v9i10e28039_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/f7104fe5ca03/medinform_v9i10e28039_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/49e4e2ddb740/medinform_v9i10e28039_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/da308d3c221a/medinform_v9i10e28039_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/142772ce93e8/medinform_v9i10e28039_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/6f814ee3736c/medinform_v9i10e28039_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/7bbabcfaf073/medinform_v9i10e28039_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/e0a5b622c235/medinform_v9i10e28039_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/7fef6c4ba01c/medinform_v9i10e28039_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/c9bede6d47e0/medinform_v9i10e28039_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/7dc1448d965a/medinform_v9i10e28039_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/f7104fe5ca03/medinform_v9i10e28039_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/49e4e2ddb740/medinform_v9i10e28039_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/da308d3c221a/medinform_v9i10e28039_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/142772ce93e8/medinform_v9i10e28039_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/6f814ee3736c/medinform_v9i10e28039_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52f3/8569546/7bbabcfaf073/medinform_v9i10e28039_fig10.jpg

相似文献

[1]
Ensemble Learning-Based Pulse Signal Recognition: Classification Model Development Study.

JMIR Med Inform. 2021-10-21

[2]
Deep Learning Assisted Neonatal Cry Classification Support Vector Machine Models.

Front Public Health. 2021

[3]
MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers.

Sensors (Basel). 2021-3-22

[4]
Automated Identification of Hookahs (Waterpipes) on Instagram: An Application in Feature Extraction Using Convolutional Neural Network and Support Vector Machine Classification.

J Med Internet Res. 2018-11-21

[5]
Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.

BMC Complement Altern Med. 2012-8-16

[6]
Classification of precancerous lesions based on fusion of multiple hierarchical features.

Comput Methods Programs Biomed. 2023-2

[7]
Ensemble learning with speaker embeddings in multiple speech task stimuli for depression detection.

Front Neurosci. 2023-3-23

[8]
Few-shot cotton leaf spots disease classification based on metric learning.

Plant Methods. 2021-11-8

[9]
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.

J Am Med Inform Assoc. 2020-1-1

[10]
Ship Radiated Noise Recognition Technology Based on ML-DS Decision Fusion.

Comput Intell Neurosci. 2021

引用本文的文献

[1]
Fusing wrist pulse and ECG data for enhanced identification of coronary heart disease and its complications.

Front Physiol. 2025-7-29

[2]
A review of recent artificial intelligence for traditional medicine.

J Tradit Complement Med. 2025-2-21

[3]
A practical guide to implementing artificial intelligence in traditional East Asian medicine research.

Integr Med Res. 2024-9

[4]
An innovative approach for assessing coronary artery lesions: Fusion of wrist pulse and photoplethysmography using a multi-sensor pulse diagnostic device.

Heliyon. 2024-3-27

[5]
OEDL: an optimized ensemble deep learning method for the prediction of acute ischemic stroke prognoses using union features.

Front Neurol. 2023-6-21

[6]
A novel method for assessing cardiac function in patients with coronary heart disease based on wrist pulse analysis.

Ir J Med Sci. 2023-12

[7]
Current status and trends of artificial intelligence research on the four traditional Chinese medicine diagnostic methods: a scientometric study.

Ann Transl Med. 2023-2-15

本文引用的文献

[1]
Using high-dimensional features for high-accuracy pulse diagnosis.

Math Biosci Eng. 2020-10-9

[2]
Pulse-Wave-Pattern Classification with a Convolutional Neural Network.

Sci Rep. 2019-10-17

[3]
Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator.

Evid Based Complement Alternat Med. 2017

[4]
Parameters describing the pulse wave.

Physiol Res. 2009

[5]
Pulse image recognition using fuzzy neural network.

Annu Int Conf IEEE Eng Med Biol Soc. 2007

[6]
Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk.

Hypertens Res. 2003-8

[7]
Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases.

Circulation. 2003-6-10

[8]
Pulse wave analysis.

Br J Clin Pharmacol. 2001-6

[9]
Noninvasive pulse wave analysis for the early detection of vascular disease.

Hypertension. 1995-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索