Cao Hong-Hua, Zhao Xiao-En, Chen Feng, Wang Shi-Jie, Liu Xing-Hua
Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650504, China.
Key Laboratory of Tree-ring Physical Chemic Research of China Meteorological Administration, Institute of Desert Meteorology, Chinese Meteorological Administration, Urumqi 830002, China.
Ying Yong Sheng Tai Xue Bao. 2021 Oct;32(10):3618-3626. doi: 10.13287/j.1001-9332.202110.018.
The study of regional historical climate change is limited by the availability of observational data, which is not conducive to understanding long-term climate change. In this study, we used the tree-ring cores of to establish a tree ring width chronology (RES) from the southeast Shanxi Province, and analyzed the relationship between precipitation and tree-ring width chronology. The results showed that the residual chronology had a good correlation (=0.636, =59, <0.01) with January-June precipitation. A linear regression was used to reconstruct the January-June precipitation for the southeastern Shanxi Province, which accounts for 40.4% of the instrumental precipitation variation during 1724-2019. Dry conditions occurred during 1742-1771, 1830-1848, 1872-1894, 1917-1945, 1961-1981, and 1990-2019, while the periods of 1727-1741, 1772-1829, 1849-1871, 1895-1916 were relatively wet. There were 10 extremely dry years and six extremely wet years during the period from 1724 to 2019. The longest dry periods were 1742-1771 and 1990-2019, while the longest wet period was 1772-1829. Results of spatial climate correlation analyses with gridded land surface data showed that the precipitation reconstruction contained a strong regional precipitation signal for southeast Shanxi Province. Power spectrum analysis of the precipitation reconstruction showed remarkable 2.3, 3.2-3.3, 3.7-3.8, 6.3-6.7, 8.3-8.7 years cycles for the past 296 years, the 2.3 year cycle corresponds to the 'quasi-two-year pulsation', and the 3.2-3.3, 3.7-3.8 and 6.3-6.7 year cycles might have a certain relationship with ENSO. Results of the spatial correlation analysis showed that the reconstructed precipitation series could better represent precipitation changes in the study area.
区域历史气候变化的研究受到观测数据可用性的限制,这不利于理解长期气候变化。在本研究中,我们使用来自山西省东南部的树木年轮芯建立了一个树木年轮宽度年表(RES),并分析了降水与树木年轮宽度年表之间的关系。结果表明,残差年表与1月至6月降水具有良好的相关性(=0.636,=59,<0.01)。利用线性回归重建了山西省东南部1月至6月的降水,其解释了1724 - 2019年期间仪器观测降水变化的40.4%。干旱状况出现在1742 - 1771年、1830 - 1848年、1872 - 1894年、1917 - 1945年、1961 - 1981年以及1990 - 2019年,而1727 - 1741年、1772 - 1829年、1849 - 1871年、1895 - 1916年期间相对湿润。在1724年至2019年期间有10个极端干旱年份和6个极端湿润年份。最长的干旱期是1742 - 1771年和1990 - 2019年,而最长的湿润期是1772 - 1829年。与网格化陆地表面数据的空间气候相关性分析结果表明,降水重建包含了山西省东南部强烈的区域降水信号。降水重建的功率谱分析显示,在过去296年中存在显著的2.3、3.2 - 3.3、3.7 - 3.8、6.3 - 6.7、8.3 - 8.7年周期,2.3年周期对应于“准两年脉动”,3.2 - 3.3、3.7 - 3.8和6.3 - 6.7年周期可能与厄尔尼诺 - 南方涛动(ENSO)有一定关系。空间相关性分析结果表明,重建的降水序列能够更好地代表研究区域的降水变化。