文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高尔基腱器官检测肌筋膜外部力量。

Detection of epimuscular myofascial forces by Golgi tendon organs.

机构信息

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA.

出版信息

Exp Brain Res. 2022 Jan;240(1):147-158. doi: 10.1007/s00221-021-06242-1. Epub 2021 Oct 22.


DOI:10.1007/s00221-021-06242-1
PMID:34677632
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8803698/
Abstract

Skeletal muscles embed multiple tendon organs, both at the proximal and distal ends of muscle fibers. One of the functions of such spatial distribution may be to provide locally unique force feedback, which may become more important when stresses are distributed non-uniformly within the muscle. Forces exerted by connections between adjacent muscles (i.e. epimuscular myofascial forces) may cause such local differences in force. The aim of this exploratory study was to investigate the effects of mechanical interactions between adjacent muscles on sensory encoding by tendon organs. Action potentials from single afferents were recorded intra-axonally in response to ramp-hold release (RHR) stretches of a passive agonistic muscle at different lengths or relative positions of its passive synergist. The tendons of gastrocnemius (GAS), plantaris (PL) and soleus (SO) muscles were cut from the skeleton for attachment to servomotors. Connective tissues among these muscles were kept intact. Lengthening GAS + PL decreased the force threshold of SO tendon organs (p = 0.035). The force threshold of lateral gastrocnemius (LG) tendon organs was not affected by SO length (p = 0.371). Also displacing LG + PL, kept at a constant muscle-tendon unit length, from a proximal to a more distal position resulted in a decrease in force threshold of LG tendon organs (p = 0.007). These results indicate that tendon organ firing is affected by changes in length and/or relative position of adjacent synergistic muscles. We conclude that tendon organs can provide the central nervous system with information about local stresses caused by epimuscular myofascial forces.

摘要

骨骼肌中嵌入了多个肌腱器官,既有在肌纤维的近端,也有在肌纤维的远端。这种空间分布的一个功能可能是提供局部独特的力反馈,当肌肉内的应力分布不均匀时,这种力反馈可能变得更加重要。相邻肌肉之间的连接(即肌筋膜内的肌肉力)施加的力可能导致力的这种局部差异。本探索性研究的目的是研究相邻肌肉之间的机械相互作用对肌腱器官的感觉编码的影响。通过在不同长度或其被动协同肌的相对位置下对被动兴奋肌肉进行斜坡保持释放(RHR)拉伸,记录到单个传入纤维的动作电位。将跟腱(GAS)、跖肌(PL)和比目鱼肌(SO)的肌腱从骨骼上切断,以便连接到伺服电机上。这些肌肉之间的结缔组织保持完整。伸长 GAS+PL 会降低 SO 肌腱器官的力阈值(p=0.035)。SO 长度不会影响外侧跟腱(LG)肌腱器官的力阈值(p=0.371)。同样,当将 LG+PL 保持在恒定的肌肌腱单位长度时,从近端到更远端的位置移动,LG 肌腱器官的力阈值会降低(p=0.007)。这些结果表明,肌腱器官的发射受到相邻协同肌长度和/或相对位置变化的影响。我们得出结论,肌腱器官可以为中枢神经系统提供有关肌筋膜内肌肉力引起的局部应力的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/c77acb4ec861/221_2021_6242_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/8c986f48eb66/221_2021_6242_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/3222531c2d0a/221_2021_6242_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/94d628a91220/221_2021_6242_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/5d1883c6a964/221_2021_6242_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/a43f5f8cea52/221_2021_6242_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/de2336c6a405/221_2021_6242_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/c77acb4ec861/221_2021_6242_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/8c986f48eb66/221_2021_6242_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/3222531c2d0a/221_2021_6242_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/94d628a91220/221_2021_6242_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/5d1883c6a964/221_2021_6242_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/a43f5f8cea52/221_2021_6242_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/de2336c6a405/221_2021_6242_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c495/8803698/c77acb4ec861/221_2021_6242_Fig7_HTML.jpg

相似文献

[1]
Detection of epimuscular myofascial forces by Golgi tendon organs.

Exp Brain Res. 2022-1

[2]
Changes in muscle spindle firing in response to length changes of neighboring muscles.

J Neurophysiol. 2016-6-1

[3]
Significant mechanical interactions at physiological lengths and relative positions of rat plantar flexors.

J Appl Physiol (1985). 2015-2-15

[4]
Pre-strained epimuscular connections cause muscular myofascial force transmission to affect properties of synergistic EHL and EDL muscles of the rat.

J Biomech Eng. 2005-10

[5]
Epimuscular myofascial force transmission occurs in the rat between the deep flexor muscles and their antagonistic muscles.

J Electromyogr Kinesiol. 2010-2

[6]
Myofascial Loads Can Occur without Fascicle Length Changes.

Integr Comp Biol. 2018-8-1

[7]
Myofascial force transmission between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening.

J Electromyogr Kinesiol. 2007-12

[8]
Tendon organs of cat medial gastrocnemius: responses to active and passive forces as a function of muscle length.

J Neurophysiol. 1975-9

[9]
Synergistic Co-activation Increases the Extent of Mechanical Interaction between Rat Ankle Plantar-Flexors.

Front Physiol. 2016-9-21

[10]
No functionally relevant mechanical effects of epimuscular myofascial connections between rat ankle plantar flexors.

J Exp Biol. 2015-9

引用本文的文献

[1]
Neuromechanical basis of region-specific differences and their implications for sport performance and injury prevention: a narrative review.

Eur J Appl Physiol. 2025-7-25

[2]
A New Perspective to Interpret How the Vestibular Efferent System Correlates the Complexity of Routine Balance Maintenance with Management of Emergency Fall Prevention Strategies.

Audiol Res. 2024-6-18

[3]
Principles of musculoskeletal sport injuries for epidemiologists: a review.

Inj Epidemiol. 2024-5-27

[4]
Morphology of proximal and distal human semitendinosus compartments and the effects of distal tendon harvesting for anterior cruciate ligament reconstruction.

J Anat. 2023-8

[5]
Knee movements cause changes in the firing behaviour of muscle spindles located within the mono-articular ankle extensor soleus in the rat.

Exp Physiol. 2024-1

本文引用的文献

[1]
Significance of epimuscular myofascial force transmission under passive muscle conditions.

J Appl Physiol (1985). 2019-1-3

[2]
Distributed force feedback in the spinal cord and the regulation of limb mechanics.

J Neurophysiol. 2018-3-1

[3]
Biomechanics and neural control of movement, 20 years later: what have we learned and what has changed?

J Neuroeng Rehabil. 2017-9-11

[4]
Mechanical Coupling Between Muscle-Tendon Units Reduces Peak Stresses.

Exerc Sport Sci Rev. 2018-1

[5]
Muscle proprioceptors in adult rat: mechanosensory signaling and synapse distribution in spinal cord.

J Neurophysiol. 2017-11-1

[6]
Longitudinal and transversal displacements between triceps surae muscles during locomotion of the rat.

J Exp Biol. 2017-2-15

[7]
Synergistic Co-activation Increases the Extent of Mechanical Interaction between Rat Ankle Plantar-Flexors.

Front Physiol. 2016-9-21

[8]
Changes in muscle spindle firing in response to length changes of neighboring muscles.

J Neurophysiol. 2016-6-1

[9]
Significant mechanical interactions at physiological lengths and relative positions of rat plantar flexors.

J Appl Physiol (1985). 2015-2-15

[10]
Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback.

Proc Natl Acad Sci U S A. 2014-11-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索