Northwestern University Feinberg School of Medicine.
Washington University in St. Louis.
J Pers Assess. 2022 Jul-Aug;104(4):467-483. doi: 10.1080/00223891.2021.1984246. Epub 2021 Oct 22.
Personality changes across the lifespan, but strong evidence regarding the mechanisms responsible for personality change remains elusive. Studies of personality change and life events, for example, suggest that personality is difficult to change. But there are two key issues with assessing personality change. First, most change models optimize population-level, not individual-level, effects, which ignores heterogeneity in patterns of change. Second, optimizing change as mean-levels of self-reports fails to incorporate methods for assessing personality dynamics, such as using changes in variances of and correlations in multivariate time series data that often proceed changes in mean-levels, making variance change detection a promising technique for the study of change. Using a sample of = 388 participants (total = 21,790) assessed weekly over 60 weeks, we test a permutation-based approach for detecting individual-level personality changes in multivariate time series and compare the results to event-based methods for assessing change. We find that a non-trivial number of participants show change over the course of the year but that there was little association between these change points and life events they experienced. We conclude by highlighting the importance in idiographic and dynamic investigations of change.
人格在整个生命周期中都会发生变化,但关于导致人格变化的机制的有力证据仍然难以捉摸。例如,人格变化与生活事件的研究表明,人格很难改变。但是,评估人格变化有两个关键问题。首先,大多数变化模型优化的是人口水平,而不是个体水平的效应,这忽略了变化模式的异质性。其次,将变化优化为自我报告的平均水平,未能纳入评估人格动态的方法,例如使用多元时间序列数据的方差和相关性变化来评估人格动态,这些方法通常先于平均水平的变化,从而使方差变化检测成为研究变化的一种很有前途的技术。我们使用一个由 388 名参与者(共 21790 名)组成的样本,在 60 周内每周评估一次,测试了一种用于检测多元时间序列中个体水平人格变化的基于排列的方法,并将结果与评估变化的基于事件的方法进行了比较。我们发现,相当数量的参与者在一年的过程中表现出变化,但这些变化点与他们所经历的生活事件之间几乎没有关联。最后,我们强调了对变化的个体化和动态研究的重要性。