Suppr超能文献

元分析五因素模型人格相互关系:依尼,米尼,米尼,莫伊,如何,哪个,为何,以及何去何从。

Meta-analytic five-factor model personality intercorrelations: Eeny, meeny, miney, moe, how, which, why, and where to go.

作者信息

Park HyeSoo Hailey, Wiernik Brenton M, Oh In-Sue, Gonzalez-Mulé Erik, Ones Deniz S, Lee Youngduk

机构信息

Department of Human Resource Management.

Department of Psychology.

出版信息

J Appl Psychol. 2020 Dec;105(12):1490-1529. doi: 10.1037/apl0000476. Epub 2020 Mar 9.

Abstract

Meta-analysis is frequently combined with multiple regression or path analysis to examine how the Big Five/Five-Factor Model (FFM) personality traits relate to work outcomes. A common approach in such studies is to construct a synthetic correlation matrix by combining new meta-analyses of FFM-criterion correlations with previously published meta-analytic FFM intercorrelations. Many meta-analytic FFM intercorrelation matrices exist in the literature, with 3 matrices being frequently used in industrial-organizational (I-O) psychology and related fields (i.e., Mount, Barrick, Scullen, & Rounds, 2005; Ones, 1993; van der Linden, te Nijenhuis, & Bakker, 2010). However, it is unknown how the choice of FFM matrix influences study conclusions, why we observe such differences in the matrices, and which matrix researchers and practitioners should use for their specific studies. We conducted 3 studies to answer these questions. In Study 1, we demonstrate that researchers' choice of FFM matrix can substantively alter conclusions from meta-analytic regressions or path analyses. In Study 2, we present a new meta-analysis of FFM intercorrelations using measures explicitly constructed around the FFM and based on employee samples. In Study 3, we systematically explore the sources of differences in FFM intercorrelations using second-order meta-analyses of 44 meta-analytic FFM matrices. We find that personality rating source (self vs. other) and inventory-specific substantive and methodological features are the primary moderators of meta-analytic FFM intercorrelations. Based on the findings from these studies, we provide a framework to guide future researchers in choosing a meta-analytic FFM matrix that is most appropriate for their specific studies, research questions, and contexts. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

摘要

元分析经常与多元回归或路径分析相结合,以检验大五人格/五因素模型(FFM)的人格特质与工作成果之间的关系。此类研究的常见方法是,通过将FFM与标准关联的新元分析与先前发表的元分析FFM相互关联相结合,构建一个综合相关矩阵。文献中存在许多元分析FFM相互关联矩阵,其中3个矩阵在工业组织(I-O)心理学及相关领域中经常被使用(即Mount、Barrick、Scullen和Rounds,2005年;Ones,1993年;van der Linden、te Nijenhuis和Bakker,2010年)。然而,尚不清楚FFM矩阵的选择如何影响研究结论,为何我们会观察到矩阵中的此类差异,以及研究人员和从业者应针对其具体研究使用哪种矩阵。我们进行了3项研究来回答这些问题。在研究1中,我们证明了研究人员对FFM矩阵的选择可以实质性地改变元分析回归或路径分析的结论。在研究2中,我们使用围绕FFM明确构建并基于员工样本的测量方法,对FFM相互关联进行了一项新的元分析。在研究3中,我们使用对44个元分析FFM矩阵的二阶元分析,系统地探究了FFM相互关联差异的来源。我们发现,人格评分来源(自我评分与他人评分)以及特定量表的实质性和方法学特征是元分析FFM相互关联的主要调节因素。基于这些研究的结果,我们提供了一个框架,以指导未来的研究人员选择最适合其具体研究、研究问题和背景的元分析FFM矩阵。(《心理学文摘数据库记录》(c)2020美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验