Suppr超能文献

基于机器学习的计算机模拟模型在急性缺血性中风患者中的治疗效果分析:一项原理验证研究

Treatment Efficacy Analysis in Acute Ischemic Stroke Patients Using In Silico Modeling Based on Machine Learning: A Proof-of-Principle.

作者信息

Winder Anthony, Wilms Matthias, Fiehler Jens, Forkert Nils D

机构信息

Department of Radiology, University of Calgary, Calgary, AB T2N 2T9, Canada.

Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.

出版信息

Biomedicines. 2021 Sep 29;9(10):1357. doi: 10.3390/biomedicines9101357.

Abstract

Interventional neuroradiology is characterized by engineering- and experience-driven device development with design improvements every few months. However, clinical validation of these new devices requires lengthy and expensive randomized controlled trials. This contribution proposes a machine learning-based in silico study design to evaluate new devices more quickly with a small sample size. Acute diffusion- and perfusion-weighted MRI, segmented one-week follow-up imaging, and clinical variables were available for 90 acute ischemic stroke patients. Three treatment option-specific random forest models were trained to predict the one-week follow-up lesion segmentation for (1) patients successfully recanalized using intra-arterial mechanical thrombectomy, (2) patients successfully recanalized using intravenous thrombolysis, and (3) non-recanalizing patients as an analogue for conservative treatment for each patient in the sample, independent of the true group membership. A repeated-measures analysis of the three predicted follow-up lesions for each patient revealed significantly larger lesions for the non-recanalizing group compared to the successful intravenous thrombolysis treatment group, which in turn showed significantly larger lesions compared to the successful mechanical thrombectomy treatment group ( < 0.001). A groupwise comparison of the true follow-up lesions for the three treatment options showed the same trend but did not reach statistical significance ( = 0.19). We conclude that the proposed machine learning-based in silico trial design leads to clinically feasible results and can support new efficacy studies by providing additional power and potential early intermediate results.

摘要

介入神经放射学的特点是每隔几个月就会根据工程和经验驱动进行设备开发及设计改进。然而,这些新设备的临床验证需要进行漫长且昂贵的随机对照试验。本文提出了一种基于机器学习的计算机模拟研究设计,以便用小样本量更快地评估新设备。90例急性缺血性中风患者可获得急性弥散加权和灌注加权磁共振成像、一周后的分割随访成像以及临床变量。针对三种治疗方案分别训练了随机森林模型,以预测样本中每位患者一周后的病变分割情况,这三种情况分别为:(1)使用动脉内机械取栓术成功再通的患者;(2)使用静脉溶栓成功再通的患者;(3)未再通的患者,作为样本中每位患者保守治疗的模拟情况,与真实分组无关。对每位患者的三种预测随访病变进行重复测量分析发现,与成功静脉溶栓治疗组相比,未再通组的病变明显更大,而成功静脉溶栓治疗组又比成功机械取栓治疗组的病变明显更大(<0.001)。对三种治疗方案的真实随访病变进行组间比较显示出相同趋势,但未达到统计学显著性(=0.19)。我们得出结论,所提出的基于机器学习的计算机模拟试验设计能得出临床可行的结果,并可通过提供额外的效力和潜在的早期中间结果来支持新的疗效研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746b/8533087/c4f32442497c/biomedicines-09-01357-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验