Suppr超能文献

急性肾损伤时的管状细胞周期反应:修改旧的和新的范式以确定慢性肾脏病预防的新靶点。

Tubular Cell Cycle Response upon AKI: Revising Old and New Paradigms to Identify Novel Targets for CKD Prevention.

机构信息

Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, 50139 Florence, Italy.

出版信息

Int J Mol Sci. 2021 Oct 14;22(20):11093. doi: 10.3390/ijms222011093.

Abstract

Acute kidney injury (AKI) is characterized by a rapid deterioration of kidney function, representing a global healthcare concern. In addition, AKI survivors frequently develop chronic kidney disease (CKD), contributing to a substantial proportion of disease burden globally. Yet, over the past 30 years, the burden of CKD has not declined to the same extent as many other important non-communicable diseases, implying a substantial deficit in the understanding of the disease progression. The assumption that the kidney response to AKI is based on a high proliferative potential of proximal tubular cells (PTC) caused a critical confounding factor, which has led to a limited development of strategies to prevent AKI and halt progression toward CKD. In this review, we discuss the latest findings on multiple mechanisms of response related to cell cycle behavior of PTC upon AKI, with a specific focus on their biological relevance. Collectively, we aim to (1) provide a new perspective on interpreting cell cycle progression of PTC in response to damage and (2) discuss how this knowledge can be used to choose the right therapeutic window of treatment for preserving kidney function while avoiding CKD progression.

摘要

急性肾损伤 (AKI) 的特征是肾功能迅速恶化,是全球医疗保健关注的问题。此外,AKI 幸存者经常会发展为慢性肾脏病 (CKD),这在全球疾病负担中占很大比例。然而,在过去的 30 年中,CKD 的负担并没有像许多其他重要的非传染性疾病那样下降到相同程度,这表明人们对疾病进展的理解存在很大的不足。肾脏对 AKI 的反应基于近端肾小管细胞 (PTC) 的高增殖潜力的假设是一个关键的混杂因素,这导致预防 AKI 和阻止向 CKD 进展的策略的发展受到限制。在这篇综述中,我们讨论了与 AKI 时 PTC 的细胞周期行为相关的多种反应机制的最新发现,特别关注它们的生物学相关性。总的来说,我们旨在:(1) 提供一种新的视角来解释 PTC 对损伤的细胞周期进展;(2) 讨论如何利用这些知识来选择正确的治疗窗,以在避免 CKD 进展的同时保护肾功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e82/8537394/68ba60ab9339/ijms-22-11093-g001.jpg

相似文献

2
Cell Cycle Arrest as a Therapeutic Target of Acute Kidney Injury.
Curr Protein Pept Sci. 2017;18(12):1224-1231. doi: 10.2174/1389203717666160915162238.
3
Acute Kidney Injury to Chronic Kidney Disease Transition.
Contrib Nephrol. 2018;193:45-54. doi: 10.1159/000484962. Epub 2018 Jan 23.
4
Acute Kidney Injury: Tubular Markers and Risk for Chronic Kidney Disease and End-Stage Kidney Failure.
Blood Purif. 2016;41(1-3):144-50. doi: 10.1159/000441269. Epub 2016 Jan 15.
6
Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5231-6. doi: 10.1073/pnas.1424313112. Epub 2015 Apr 6.
7
Acute kidney injury and maladaptive tubular repair leading to renal fibrosis.
Curr Opin Nephrol Hypertens. 2020 May;29(3):310-318. doi: 10.1097/MNH.0000000000000605.
8
Acute kidney injury to chronic kidney disease transition: insufficient cellular stress response.
Curr Opin Nephrol Hypertens. 2018 Jul;27(4):314-322. doi: 10.1097/MNH.0000000000000424.
9
Sirt6 attenuates hypoxia-induced tubular epithelial cell injury via targeting G2/M phase arrest.
J Cell Physiol. 2020 Apr;235(4):3463-3473. doi: 10.1002/jcp.29235. Epub 2019 Oct 11.
10
Mitochondrial dysfunction and the AKI-to-CKD transition.
Am J Physiol Renal Physiol. 2020 Dec 1;319(6):F1105-F1116. doi: 10.1152/ajprenal.00285.2020. Epub 2020 Oct 19.

引用本文的文献

1
Molecular mechanisms and therapeutic advances of peritubular capillary neogenesis in acute kidney injury.
Front Mol Biosci. 2025 Aug 20;12:1643838. doi: 10.3389/fmolb.2025.1643838. eCollection 2025.
3
Cellular senescence in renal ischemia-reperfusion injury.
Chin Med J (Engl). 2025 Aug 5;138(15):1794-1806. doi: 10.1097/CM9.0000000000003698. Epub 2025 Jul 7.
4
Acute kidney injury through a metabolic lens: pathological reprogramming mechanisms and clinical translation potential.
Front Physiol. 2025 Jun 6;16:1602865. doi: 10.3389/fphys.2025.1602865. eCollection 2025.
5
IL-6/GATA2/SERPINE1 pathway is implicated in regulating cellular senescence after acute kidney injury.
Front Mol Biosci. 2025 Feb 11;12:1538526. doi: 10.3389/fmolb.2025.1538526. eCollection 2025.
7
Biology of the proximal tubule in body homeostasis and kidney disease.
Nephrol Dial Transplant. 2025 Feb 4;40(2):234-243. doi: 10.1093/ndt/gfae177.
8
SNORD3A Regulates STING Transcription to Promote Ferroptosis in Acute Kidney Injury.
Adv Sci (Weinh). 2024 Sep;11(33):e2400305. doi: 10.1002/advs.202400305. Epub 2024 Jul 4.

本文引用的文献

2
Acute kidney injury.
Nat Rev Dis Primers. 2021 Jul 15;7(1):52. doi: 10.1038/s41572-021-00284-z.
4
Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model.
Dev Cell. 2021 Jul 12;56(13):1976-1988.e4. doi: 10.1016/j.devcel.2021.05.017. Epub 2021 Jun 18.
5
Proliferative polyploid cells give rise to tumors via ploidy reduction.
Nat Commun. 2021 Jan 28;12(1):646. doi: 10.1038/s41467-021-20916-y.
7
Histone deacetylase 6 inhibition mitigates renal fibrosis by suppressing TGF-β and EGFR signaling pathways in obstructive nephropathy.
Am J Physiol Renal Physiol. 2020 Dec 1;319(6):F1003-F1014. doi: 10.1152/ajprenal.00261.2020. Epub 2020 Oct 26.
8
KLF4 initiates sustained YAP activation to promote renal fibrosis in mice after ischemia-reperfusion kidney injury.
Acta Pharmacol Sin. 2021 Mar;42(3):436-450. doi: 10.1038/s41401-020-0463-x. Epub 2020 Jul 9.
9
Association Between Early Recovery of Kidney Function After Acute Kidney Injury and Long-term Clinical Outcomes.
JAMA Netw Open. 2020 Apr 1;3(4):e202682. doi: 10.1001/jamanetworkopen.2020.2682.
10
Tubule-Specific Mst1/2 Deficiency Induces CKD YAP and Non-YAP Mechanisms.
J Am Soc Nephrol. 2020 May;31(5):946-961. doi: 10.1681/ASN.2019101052. Epub 2020 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验