Devine Sean
School of Management, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.
Entropy (Basel). 2021 Sep 30;23(10):1288. doi: 10.3390/e23101288.
According to Landauer's principle, at least kBln2T Joules are needed to erase a bit that stores information in a thermodynamic system at temperature . However, the arguments for the principle rely on a regime where the equipartition principle holds. This paper, by exploring a simple model of a thermodynamic system using algorithmic information theory, shows the energy cost of transferring a bit, or restoring the original state, is kBln2T Joules for a reversible system. The principle is a direct consequence of the statistics required to allocate energy between stored energy states and thermal states, and applies outside the validity of the equipartition principle. As the thermodynamic entropy of a system coincides with the algorithmic entropy of a typical state specifying the momentum degrees of freedom, it can quantify the thermodynamic requirements in terms of bit flows to maintain a system distant from the equilibrium set of states. The approach offers a simple conceptual understanding of entropy, while avoiding problems with the statistical mechanic's approach to the second law of thermodynamics. Furthermore, the classical articulation of the principle can be used to derive the low temperature heat capacities, and is consistent with the quantum version of the principle.
根据兰道尔原理,在温度为T的热力学系统中,擦除一个存储信息的比特至少需要k B ln2 T焦耳的能量。然而,该原理的论据依赖于能均分原理成立的一种情况。本文通过使用算法信息论探索一个简单的热力学系统模型,表明对于一个可逆系统,传输一个比特或恢复原始状态的能量成本为k B ln2 T焦耳。该原理是在存储能量状态和热状态之间分配能量所需统计的直接结果,并且在能均分原理的有效性范围之外也适用。由于系统的热力学熵与指定动量自由度的典型状态的算法熵一致,它可以根据比特流来量化热力学要求,以维持一个远离平衡态集合的系统。这种方法提供了对熵的简单概念理解,同时避免了统计力学对热力学第二定律的处理方法中存在的问题。此外,该原理的经典表述可用于推导低温热容,并且与该原理的量子版本一致。