Suppr超能文献

使用全曲线训练数据集从有限纵向生长数据估计身高增长:曲线优化的两种方法——功能主成分分析和SITAR的比较

Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR.

作者信息

Králík Miroslav, Klíma Ondřej, Čuta Martin, Malina Robert M, Kozieł Sławomir, Polcerová Lenka, Škultétyová Anna, Španěl Michal, Kukla Lubomír, Zemčík Pavel

机构信息

Department of Anthropology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic.

IT4Innovations Centre of Excellence, Brno University of Technology, 612 00 Brno, Czech Republic.

出版信息

Children (Basel). 2021 Oct 18;8(10):934. doi: 10.3390/children8100934.

Abstract

A variety of models are available for the estimation of parameters of the human growth curve. Several have been widely and successfully used with longitudinal data that are reasonably complete. On the other hand, the modeling of data for a limited number of observation points is problematic and requires the interpolation of the interval between points and often an extrapolation of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new approach for fitting a relatively limited number of longitudinal data using the normal variation of human empirical growth curves. First, functional principal components analysis was done for curve phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study). Subsequently, artificial curves were generated with a combination of 12 of the principal components and applied for fitting to the newly analyzed data with the Levenberg-Marquardt optimization algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents extracted from the reference sample. The samples differed in their distance from the mean age at peak velocity for the sample and were tested by a permutation leave-one-out approach. The results indicated the potential of this method for growth modeling as a user-friendly application for practical applications in pediatrics, auxology and youth sport.

摘要

有多种模型可用于估计人类生长曲线的参数。其中一些模型已被广泛且成功地应用于相当完整的纵向数据。另一方面,对有限数量观测点的数据进行建模存在问题,需要对各点之间的间隔进行插值,并且常常需要对生长轨迹在经验极限范围之外进行外推(预测)。本研究测试了一种新方法,该方法利用人类经验生长曲线的正态变化来拟合相对有限数量的纵向数据。首先,使用参考样本(布尔诺生长研究)的完整且密集数据集对曲线阶段和幅度进行功能主成分分析。随后,通过12个主成分的组合生成人工曲线,并使用列文伯格 - 马夸尔特优化算法将其应用于拟合新分析的数据。该方法在从参考样本中提取的七个青少年每年5个点的纵向数据样本上进行了测试。这些样本与样本中峰值速度时的平均年龄的距离不同,并通过留一法排列检验进行测试。结果表明,该方法在生长建模方面具有潜力,可作为一种用户友好的应用,用于儿科、人体测量学和青少年体育的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/753e/8535004/7b37fdab8e9a/children-08-00934-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验