Suppr超能文献

基于双加权最小化的同时补丁组稀疏编码用于图像恢复

Simultaneous Patch-Group Sparse Coding with Dual-Weighted Minimization for Image Restoration.

作者信息

Zhang Jiachao, Tong Ying, Jiao Liangbao

机构信息

Artificial Intelligence Industrial Technology Research Institute, Nanjing Institute of Technology, Nanjing 211167, China.

Jiangsu Engineering Research Center of IntelliSense Technology and System, Nanjing Institute of Technology, Nanjing 211167, China.

出版信息

Micromachines (Basel). 2021 Oct 1;12(10):1205. doi: 10.3390/mi12101205.

Abstract

Sparse coding (SC) models have been proven as powerful tools applied in image restoration tasks, such as patch sparse coding (PSC) and group sparse coding (GSC). However, these two kinds of SC models have their respective drawbacks. PSC tends to generate visually annoying blocking artifacts, while GSC models usually produce over-smooth effects. Moreover, conventional ℓ1 minimization-based convex regularization was usually employed as a standard scheme for estimating sparse signals, but it cannot achieve an accurate sparse solution under many realistic situations. In this paper, we propose a novel approach for image restoration via simultaneous patch-group sparse coding (SPG-SC) with dual-weighted ℓp minimization. Specifically, in contrast to existing SC-based methods, the proposed SPG-SC conducts the local sparsity and nonlocal sparse representation simultaneously. A dual-weighted ℓp minimization-based non-convex regularization is proposed to improve the sparse representation capability of the proposed SPG-SC. To make the optimization tractable, a non-convex generalized iteration shrinkage algorithm based on the alternating direction method of multipliers (ADMM) framework is developed to solve the proposed SPG-SC model. Extensive experimental results on two image restoration tasks, including image inpainting and image deblurring, demonstrate that the proposed SPG-SC outperforms many state-of-the-art algorithms in terms of both objective and perceptual quality.

摘要

稀疏编码(SC)模型已被证明是应用于图像恢复任务的强大工具,如补丁稀疏编码(PSC)和组稀疏编码(GSC)。然而,这两种SC模型都有各自的缺点。PSC往往会产生视觉上令人讨厌的块状伪影,而GSC模型通常会产生过度平滑的效果。此外,传统的基于ℓ1最小化的凸正则化通常被用作估计稀疏信号的标准方案,但在许多实际情况下它无法获得准确的稀疏解。在本文中,我们提出了一种通过具有双加权ℓp最小化的同时补丁 - 组稀疏编码(SPG - SC)进行图像恢复的新方法。具体而言,与现有的基于SC的方法相比,所提出的SPG - SC同时进行局部稀疏性和非局部稀疏表示。提出了一种基于双加权ℓp最小化的非凸正则化方法,以提高所提出的SPG - SC的稀疏表示能力。为了使优化易于处理,开发了一种基于乘子交替方向法(ADMM)框架的非凸广义迭代收缩算法来求解所提出的SPG - SC模型。在包括图像修复和图像去模糊在内的两个图像恢复任务上的大量实验结果表明,所提出的SPG - SC在客观和感知质量方面都优于许多现有算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ab8/8540981/4daaddb1fae4/micromachines-12-01205-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验