Suppr超能文献

用于微系统技术中键合的集成反应性多层系统研究。

Investigation of Integrated Reactive Multilayer Systems for Bonding in Microsystem Technology.

作者信息

Bourim El-Mostafa, Kang Il-Suk, Kim Hee Yeoun

机构信息

National NanoFab Center, Department of Nanostructure Technology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.

出版信息

Micromachines (Basel). 2021 Oct 19;12(10):1272. doi: 10.3390/mi12101272.

Abstract

For the integration of a reactive multilayer system (iRMS) with a high exothermic reaction enthalpy as a heat source on silicon wafers for low-temperature bonding in the 3D integration and packaging of microsystems, two main conflicting issues should be overcome: heat accumulation arising from the layer interface pre-intermixing, which causes spontaneous self-ignition during the deposition of the system layers, and conductive heat loss through the substrate, which leads to reaction propagation quenching. In this work, using electron beam evaporation, we investigated the growth of a high exothermic metallic Pd/Al reactive multilayer system (RMS) on different Si-wafer substrates with different thermal conduction, specifically a bare Si-wafer, a RuO or PdO layer buffering Si-wafer, and a SiO-coated Si-wafer. With the exception of the bare silicon wafer, the RMS grown on all other coated wafers underwent systematic spontaneous self-ignition surging during the deposition process once it reached a thickness of around 1 μm. This issue was surmounted by investigating a solution based on tuning the output energy by stacking alternating sections of metallic reactive multilayer Pd/Al and Ni/Al systems that have a high and medium enthalpy of exothermic reactions, respectively. This heterostructure with a bilayer thickness of 100 nm was successfully grown on a SiO-coated Si-wafer to a total thickness of 3 μm without any spontaneous upsurge of self-ignition; it could be electrically ignited at room temperature, enabling a self-sustained propagating exothermic reaction along the reactive patterned track without undergoing quenching. The results of this study will promote the growth of reactive multilayer systems by electron beam evaporation processing and their potential integration as local heat sources on Si-wafer substrates for bonding applications in microelectronics and microsystems technology.

摘要

对于将具有高放热反应焓的反应性多层系统(iRMS)作为热源集成到硅片上,用于微系统的3D集成和封装中的低温键合,需要克服两个主要的矛盾问题:层界面预混合产生的热量积累,这会在系统层沉积过程中导致自发自燃;以及通过衬底的传导热损失,这会导致反应传播淬灭。在这项工作中,我们使用电子束蒸发,研究了高放热金属Pd/Al反应性多层系统(RMS)在具有不同热传导率的不同硅片衬底上的生长情况,具体包括裸硅片、RuO或PdO层缓冲硅片以及SiO涂层硅片。除了裸硅片外,在所有其他涂层硅片上生长的RMS一旦达到约1μm的厚度,在沉积过程中就会经历系统性的自发自燃激增。通过研究一种解决方案克服了这个问题,该方案基于通过堆叠分别具有高和中等放热反应焓的金属反应性多层Pd/Al和Ni/Al系统的交替部分来调节输出能量。这种双层厚度为100nm的异质结构成功地在SiO涂层硅片上生长到总厚度为3μm,没有任何自发的自燃激增;它可以在室温下电点燃,能够沿着反应图案化轨迹进行自持传播的放热反应而不发生淬灭。这项研究的结果将促进通过电子束蒸发工艺生长反应性多层系统,以及它们作为局部热源在硅片衬底上的潜在集成,用于微电子和微系统技术中的键合应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81eb/8541174/4c42ce9b474c/micromachines-12-01272-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验