Suppr超能文献

A Review of Finite Element Analysis and Artificial Neural Networks as Failure Pressure Prediction Tools for Corroded Pipelines.

作者信息

Vijaya Kumar Suria Devi, Lo Yin Kai Michael, Arumugam Thibankumar, Karuppanan Saravanan

机构信息

Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.

出版信息

Materials (Basel). 2021 Oct 15;14(20):6135. doi: 10.3390/ma14206135.

Abstract

This paper discusses the capabilities of artificial neural networks (ANNs) when integrated with the finite element method (FEM) and utilized as prediction tools to predict the failure pressure of corroded pipelines. The use of conventional residual strength assessment methods has proven to produce predictions that are conservative, and this, in turn, costs companies by leading to premature maintenance and replacement. ANNs and FEM have proven to be strong failure pressure prediction tools, and they are being utilized to replace the time-consuming methods and conventional codes. FEM is widely used to evaluate the structural integrity of corroded pipelines, and the integration of ANNs into this process greatly reduces the time taken to obtain accurate results.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c01/8538846/827998d3ab3a/materials-14-06135-g001.jpg

相似文献

3
Numerical Simulation and ANN Prediction of Crack Problems within Corrosion Defects.
Materials (Basel). 2024 Jul 1;17(13):3237. doi: 10.3390/ma17133237.
5
Collapse of Corroded Pipelines under Combined Tension and External Pressure.
PLoS One. 2016 Apr 25;11(4):e0154314. doi: 10.1371/journal.pone.0154314. eCollection 2016.
9
Finite-element neural networks for solving differential equations.
IEEE Trans Neural Netw. 2005 Nov;16(6):1381-92. doi: 10.1109/TNN.2005.857945.

本文引用的文献

1
Training feedforward networks with the Marquardt algorithm.
IEEE Trans Neural Netw. 1994;5(6):989-93. doi: 10.1109/72.329697.
2
Real-time computing without stable states: a new framework for neural computation based on perturbations.
Neural Comput. 2002 Nov;14(11):2531-60. doi: 10.1162/089976602760407955.
3
Neural networks and physical systems with emergent collective computational abilities.
Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8. doi: 10.1073/pnas.79.8.2554.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验