Suppr超能文献

人工神经网络作为药代动力学-药效学综合分析的新方法。

Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis.

作者信息

Gobburu J V, Chen E P

机构信息

Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58105, USA.

出版信息

J Pharm Sci. 1996 May;85(5):505-10. doi: 10.1021/js950433d.

Abstract

A novel model-independent approach to analyze pharmacokinetic (PK)-pharmacodynamic (PD) data using artificial neural networks (ANNs) is presented. ANNs are versatile computational tools that possess the attributes of adaptive learning and self-organization. The emulative ability of neural networks is evaluated with simulated PK-PD data, and the power of ANNs to extrapolate the acquired knowledge is investigated. ANNs of one architecture are shown to be flexible enough to accurately predict PD profiles for a wide variety of PK-PD relationships (e.g., effect compartment linked to the central or peripheral compartment and indirect response models). Also, an example is given of the ability of ANNs to accurately predict PD profiles without requiring any information regarding the active metabolite. Because structural details are not required, ANNs exhibit a clear advantage over conventional model-dependent methods. ANNs are proved to be robust toward error in the data and perturbations in the initial estimates. Moreover, ANNs were shown to handle sparse data well. Neural networks are emerging as promising tools in the field of drug discovery and development.

摘要

本文提出了一种使用人工神经网络(ANN)分析药代动力学(PK)-药效动力学(PD)数据的新型非模型依赖方法。人工神经网络是具有自适应学习和自组织特性的通用计算工具。利用模拟的PK-PD数据评估神经网络的仿真能力,并研究人工神经网络外推所学知识的能力。结果表明,一种架构的人工神经网络具有足够的灵活性,能够准确预测各种PK-PD关系(例如,与中央或外周室相连的效应室和间接反应模型)的PD曲线。此外,还给出了一个例子,说明人工神经网络能够在不需要任何关于活性代谢物信息的情况下准确预测PD曲线。由于不需要结构细节,人工神经网络相对于传统的模型依赖方法具有明显优势。事实证明,人工神经网络对数据中的误差和初始估计中的扰动具有鲁棒性。此外,人工神经网络还被证明能够很好地处理稀疏数据。神经网络正在成为药物发现和开发领域中有前景的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验