O'Farrell Connor, Hoad Caroline L, Stamatopoulos Konstantinos, Marciani Luca, Sulaiman Sarah, Simmons Mark J H, Batchelor Hannah K
School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK.
Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.
Pharmaceutics. 2021 Sep 23;13(10):1545. doi: 10.3390/pharmaceutics13101545.
Knowledge of luminal flow inside the human colon remains elusive, despite its importance for the design of new colon-targeted drug delivery systems and physiologically relevant in silico models of dissolution mechanics within the colon. This study uses magnetic resonance imaging (MRI) techniques to visualise, measure and differentiate between different motility patterns within an anatomically representative in vitro dissolution model of the human ascending colon: the dynamic colon model (DCM). The segmented architecture and peristalsis-like contractile activity of the DCM generated flow profiles that were distinct from compendial dissolution apparatuses. MRI enabled different motility patterns to be classified by the degree of mixing-related motion using a new tagging method. Different media viscosities could also be differentiated, which is important for an understanding of colonic pathophysiology, the conditions that a colon-targeted dosage form may be subjected to and the effectiveness of treatments. The tagged MRI data showed that the DCM effectively mimicked wall motion, luminal flow patterns and the velocities of the contents of the human ascending colon. Accurate reproduction of in vivo hydrodynamics is an essential capability for a biorelevant mechanical model of the colon to make it suitable for in vitro data generation for in vitro in vivo evaluation (IVIVE) or in vitro in vivo correlation (IVIVC). This work illustrates how the DCM provides new insight into how motion of the colonic walls may control luminal hydrodynamics, driving erosion of a dosage form and subsequent drug release, compared to traditional pharmacopeial methods.
尽管管腔内流动对于新型结肠靶向给药系统的设计以及结肠内溶解力学的生理相关计算机模型很重要,但人们对人体结肠内的管腔内流动仍知之甚少。本研究使用磁共振成像(MRI)技术,在具有解剖代表性的人体升结肠体外溶解模型——动态结肠模型(DCM)中,可视化、测量并区分不同的运动模式。DCM的分段结构和类似蠕动的收缩活动产生了与药典溶解装置不同的流动剖面。MRI使用一种新的标记方法,能够根据混合相关运动的程度对不同的运动模式进行分类。不同的介质粘度也能够被区分,这对于理解结肠病理生理学、结肠靶向剂型可能面临的条件以及治疗效果很重要。标记的MRI数据表明,DCM有效地模拟了人体升结肠的壁运动、管腔内流动模式以及内容物的速度。准确再现体内流体动力学是结肠生物相关力学模型的一项基本能力,使其适用于体外数据生成,用于体外-体内评估(IVIVE)或体外-体内相关性(IVIVC)。与传统药典方法相比,这项工作说明了DCM如何为结肠壁运动如何控制管腔内流体动力学、驱动剂型侵蚀及随后的药物释放提供新的见解。