Wu Alexander T H, Lawal Bashir, Wei Li, Wen Ya-Ting, Tzeng David T W, Lo Wen-Cheng
The Ph.D. Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan.
Pharmaceutics. 2021 Sep 24;13(10):1555. doi: 10.3390/pharmaceutics13101555.
Alzheimer's disease (AD) is the most frequent cause of neurodegenerative dementia and affects nearly 50 million people worldwide. Early stage diagnosis of AD is challenging, and there is presently no effective treatment for AD. The specific genetic alterations and pathological mechanisms of the development and progression of dementia remain poorly understood. Therefore, identifying essential genes and molecular pathways that are associated with this disease's pathogenesis will help uncover potential treatments. In an attempt to achieve a more comprehensive understanding of the molecular pathogenesis of AD, we integrated the differentially expressed genes (DEGs) from six microarray datasets of AD patients and controls. We identified ATPase H+ transporting V1 subunit A (), BCL2 interacting protein 3 (), calmodulin-dependent protein kinase IV (), TOR signaling pathway regulator-like (TIPRL), and the translocase of outer mitochondrial membrane 70 () as upregulated DEGs common to the five datasets. Our analyses revealed that these genes exhibited brain-specific gene co-expression clustering with , , , , , , , , , , , and . Taking the mean relative expression levels of this geneset in different brain regions into account, we found that the frontal cortex (BA9) exhibited significantly ( < 0.05) higher expression levels of these DEGs, while the hippocampus exhibited the lowest levels. These DEGs are associated with mitochondrial dysfunction, inflammation processes, and various pathways involved in the pathogenesis of AD. Finally, our blood-brain barrier (BBB) predictions using the support vector machine (SVM) and LiCABEDS algorithm and molecular docking analysis suggested that antrocin is permeable to the BBB and exhibits robust ligand-receptor interactions with high binding affinities to CAMK4, TOMM70, and T1PRL. Our results also revealed good predictions for ADMET properties, drug-likeness, adherence to Lipinskís rules, and no alerts for pan-assay interference compounds (PAINS) Conclusions: These results suggest a new molecular signature for AD parthenogenesis and antrocin as a potential therapeutic agent. Further investigation is warranted.
阿尔茨海默病(AD)是神经退行性痴呆最常见的病因,全球近5000万人受其影响。AD的早期诊断具有挑战性,目前尚无有效的治疗方法。痴呆症发生和发展的具体基因改变及病理机制仍知之甚少。因此,确定与该疾病发病机制相关的关键基因和分子途径将有助于发现潜在的治疗方法。为了更全面地了解AD的分子发病机制,我们整合了来自AD患者和对照的六个微阵列数据集的差异表达基因(DEG)。我们确定了ATP酶H +转运V1亚基A( )、BCL2相互作用蛋白3( )、钙调蛋白依赖性蛋白激酶IV( )、TOR信号通路调节样蛋白(TIPRL)和线粒体外膜转位酶70( )作为五个数据集共有的上调DEG。我们的分析表明,这些基因与 、 、 、 、 、 、 、 、 、 、 、 表现出脑特异性基因共表达聚类。考虑到该基因集在不同脑区的平均相对表达水平,我们发现额叶皮质(BA9)中这些DEG的表达水平显著更高( < 0.05),而海马体中的水平最低。这些DEG与线粒体功能障碍、炎症过程以及AD发病机制中涉及的各种途径相关。最后,我们使用支持向量机(SVM)和LiCABEDS算法以及分子对接分析进行的血脑屏障(BBB)预测表明,莪术二酮可透过血脑屏障,并与钙调蛋白依赖性蛋白激酶4(CAMK4)、线粒体外膜转位酶70(TOMM70)和TOR信号通路调节样蛋白(T1PRL)表现出强大的配体 - 受体相互作用,具有高结合亲和力。我们的结果还显示出对药物代谢动力学性质、药物相似性、符合Lipinskí规则以及无泛测定干扰化合物(PAINS)警报的良好预测。结论:这些结果表明了AD发病机制的新分子特征以及莪术二酮作为潜在治疗药物的可能性。有必要进行进一步研究。