Suppr超能文献

机器学习揭示了区分杂乱无章和非杂乱无章化合物的结构特征取决于靶标组合。

Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations.

机构信息

Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, 53115, Bonn, Germany.

出版信息

Sci Rep. 2021 Apr 12;11(1):7863. doi: 10.1038/s41598-021-87042-z.

Abstract

Compounds with defined multi-target activity (promiscuity) play an increasingly important role in drug discovery. However, the molecular basis of multi-target activity is currently only little understood. In particular, it remains unclear whether structural features exist that generally characterize promiscuous compounds and set them apart from compounds with single-target activity. We have devised a test system using machine learning to systematically examine structural features that might characterize compounds with multi-target activity. Using this system, more than 860,000 diagnostic predictions were carried out. The analysis provided compelling evidence for the presence of structural characteristics of promiscuous compounds that were dependent on given target combinations, but not generalizable. Feature weighting and mapping identified characteristic substructures in test compounds. Taken together, these findings are relevant for the design of compounds with desired multi-target activity.

摘要

具有明确多靶点活性(混杂性)的化合物在药物发现中起着越来越重要的作用。然而,目前对多靶点活性的分子基础知之甚少。特别是,目前尚不清楚是否存在一般特征化混杂化合物并将其与具有单靶点活性的化合物区分开来的结构特征。我们设计了一个使用机器学习的测试系统,系统地检查可能特征化具有多靶点活性的化合物的结构特征。使用该系统,进行了超过 860,000 次诊断预测。分析提供了令人信服的证据,证明了混杂化合物的结构特征的存在取决于特定的靶标组合,但不具有普遍性。特征加权和映射确定了测试化合物中的特征子结构。总之,这些发现与具有所需多靶点活性的化合物的设计有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc09/8042106/d6b53ef5bf91/41598_2021_87042_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验