Suppr超能文献

分子动力学模拟研究纳米碳管内水动力学对尺寸和温度的影响。

Effect of Size and Temperature on Water Dynamics inside Carbon Nano-Tubes Studied by Molecular Dynamics Simulation.

机构信息

Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.

Department of Physics, University of Houston, Houston, TX 77030-5005, USA.

出版信息

Molecules. 2021 Oct 13;26(20):6175. doi: 10.3390/molecules26206175.

Abstract

Water transport inside carbon nano-tubes (CNTs) has attracted considerable attention due to its nano-fluidic properties, its importance in nonporous systems, and the wide range of applications in membrane desalination and biological medicine. Recent studies show an enhancement of water diffusion inside nano-channels depending on the size of the nano-confinement. However, the underlying mechanism of this enhancement is not well understood yet. In this study, we performed Molecular Dynamics (MD) simulations to study water flow inside CNT systems. The length of CNTs considered in this study is 20 nm, but their diameters vary from 1 to 10 nm. The simulations are conducted at temperatures ranging from 260 K to 320 K. We observe that water molecules are arranged into coaxial water tubular sheets. The number of these tubular sheets depends on the CNT size. Further analysis reveals that the diffusion of water molecules along the CNT axis deviates from the Arrhenius temperature dependence. The non-Arrhenius relationship results from a fragile liquid-like water component persisting at low temperatures with fragility higher than that of the bulk water.

摘要

水在碳纳米管(CNTs)内的输运由于其纳流特性、在非多孔系统中的重要性以及在膜脱盐和生物医学等广泛领域的应用而受到了相当多的关注。最近的研究表明,水在纳米通道内的扩散会随着纳米约束的大小而增强。然而,这种增强的潜在机制尚未得到很好的理解。在这项研究中,我们进行了分子动力学(MD)模拟,以研究 CNT 系统内的水流。本研究中考虑的 CNT 长度为 20nm,但直径从 1nm 到 10nm 不等。模拟在 260K 到 320K 的温度范围内进行。我们观察到水分子排列成同轴的管状水片。这些管状片的数量取决于 CNT 的大小。进一步的分析表明,水分子沿着 CNT 轴的扩散偏离了 Arrhenius 温度依赖性。这种非 Arrhenius 关系源于低温下存在的易碎类液态水分子,其脆性高于体相水。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a45/8540028/b9bd936b7c53/molecules-26-06175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验