文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深部脑膜穿越过程中聚集纳米颗粒导向的研究。

Studies on Aggregated Nanoparticles Steering during Deep Brain Membrane Crossing.

作者信息

Kafash Hoshiar Ali, Dadras Javan Shahriar, Le Tuan-Anh, Hairi Yazdi Mohammad Reza, Yoon Jungwon

机构信息

School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK.

School of Mechanical Engineering, University of Tehran, Tehran 1439955961, Iran.

出版信息

Nanomaterials (Basel). 2021 Oct 17;11(10):2754. doi: 10.3390/nano11102754.


DOI:10.3390/nano11102754
PMID:34685194
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8538819/
Abstract

Many central nervous system (CNS) diseases, such as Alzheimer's disease (AD), affect the deep brain region, which hinders their effective treatment. The hippocampus, a deep brain area critical for learning and memory, is especially vulnerable to damage during early stages of AD. Magnetic drug targeting has shown high potential in delivering drugs to a targeted disease site effectively by applying a strong electromagnetic force. This study illustrates a nanotechnology-based scheme for delivering magnetic nanoparticles (MNP) to the deep brain region. First, we developed a mathematical model and a molecular dynamic simulation to analyze membrane crossing, and to study the effects of particle size, aggregation, and crossing velocities. Then, using in vitro experiments, we studied effective parameters in aggregation. We have also studied the process and environmental parameters. We have demonstrated that aggregation size can be controlled when particles are subjected to external electromagnetic fields. Our simulations and experimental studies can be used for capturing MNPs in brain, the transport of particles across the intact BBB and deep region targeting. These results are in line with previous in vivo studies and establish an effective strategy for deep brain region targeting with drug loaded MNPs through the application of an external electromagnetic field.

摘要

许多中枢神经系统(CNS)疾病,如阿尔茨海默病(AD),会影响脑深部区域,这阻碍了对它们的有效治疗。海马体是脑深部一个对学习和记忆至关重要的区域,在AD早期阶段特别容易受到损伤。磁性药物靶向通过施加强电磁力,在将药物有效递送至目标疾病部位方面显示出了很高的潜力。本研究阐述了一种基于纳米技术的将磁性纳米颗粒(MNP)递送至脑深部区域的方案。首先,我们开发了一个数学模型和分子动力学模拟,以分析膜穿透,并研究粒径、聚集和穿透速度的影响。然后,通过体外实验,我们研究了聚集中的有效参数。我们还研究了过程和环境参数。我们已经证明,当颗粒受到外部电磁场作用时,聚集尺寸是可以控制的。我们的模拟和实验研究可用于在脑中捕获MNP、颗粒跨完整血脑屏障的运输以及深部区域靶向。这些结果与先前的体内研究一致,并通过应用外部电磁场建立了一种用载药MNP靶向脑深部区域的有效策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/70c85d33efea/nanomaterials-11-02754-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/b3f295fc69ec/nanomaterials-11-02754-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/c20908ad0886/nanomaterials-11-02754-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/bfbe4b41d87d/nanomaterials-11-02754-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/176c3877371e/nanomaterials-11-02754-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/bcd1d4439af4/nanomaterials-11-02754-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/771d314e3ed6/nanomaterials-11-02754-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/79b2c2d6d1ce/nanomaterials-11-02754-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/164e334c179e/nanomaterials-11-02754-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/bdbc19aa4ced/nanomaterials-11-02754-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/70c85d33efea/nanomaterials-11-02754-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/b3f295fc69ec/nanomaterials-11-02754-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/c20908ad0886/nanomaterials-11-02754-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/bfbe4b41d87d/nanomaterials-11-02754-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/176c3877371e/nanomaterials-11-02754-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/bcd1d4439af4/nanomaterials-11-02754-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/771d314e3ed6/nanomaterials-11-02754-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/79b2c2d6d1ce/nanomaterials-11-02754-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/164e334c179e/nanomaterials-11-02754-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/bdbc19aa4ced/nanomaterials-11-02754-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7511/8538819/70c85d33efea/nanomaterials-11-02754-g010.jpg

相似文献

[1]
Studies on Aggregated Nanoparticles Steering during Deep Brain Membrane Crossing.

Nanomaterials (Basel). 2021-10-17

[2]
Guidance of Magnetic Nanocontainers for Treating Alzheimer's Disease Using an Electromagnetic, Targeted Drug-Delivery Actuator.

J Biomed Nanotechnol. 2016-3

[3]
A Novel Magnetic Actuation Scheme to Disaggregate Nanoparticles and Enhance Passage across the Blood-Brain Barrier.

Nanomaterials (Basel). 2017-12-22

[4]
Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for Glioblastoma multiforme treatment.

Comput Methods Programs Biomed. 2021-11

[5]
Functionalized electromagnetic actuation method for aggregated nanoparticles steering.

Annu Int Conf IEEE Eng Med Biol Soc. 2017-7

[6]
A Promising Approach: Magnetic Nanosystems for Alzheimer's Disease Theranostics.

Pharmaceutics. 2023-9-13

[7]
Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer's disease.

Nanoscale. 2017-8-3

[8]
Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery.

Sensors (Basel). 2017-9-7

[9]
A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.

IEEE Trans Biomed Eng. 2015-1

[10]
Magnetic Nanoparticles in the Central Nervous System: Targeting Principles, Applications and Safety Issues.

Molecules. 2017-12-21

本文引用的文献

[1]
Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico.

Nanoscale. 2018-6-21

[2]
A Novel Magnetic Actuation Scheme to Disaggregate Nanoparticles and Enhance Passage across the Blood-Brain Barrier.

Nanomaterials (Basel). 2017-12-22

[3]
Functionalized electromagnetic actuation method for aggregated nanoparticles steering.

Annu Int Conf IEEE Eng Med Biol Soc. 2017-7

[4]
Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery.

Sensors (Basel). 2017-9-7

[5]
Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer's disease.

Nanoscale. 2017-8-3

[6]
Molecular dynamics simulation study of translocation of fullerene C through skin bilayer: effect of concentration on barrier properties.

Nanoscale. 2017-3-23

[7]
A density functional theory investigation of the electronic structure and spin moments of magnetite.

Sci Technol Adv Mater. 2014-8-5

[8]
Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

Biochemistry. 2016-9-6

[9]
Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles through the Brain Blood Barrier: A Computational Approach.

Biosensors (Basel). 2016-6-14

[10]
Toward Accumulation of Magnetic Nanoparticles into Tissues of Small Porosity.

Langmuir. 2015-8-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索