Witecka Apolonia, Kwiatkowski Sebastian, Ishikawa Takao, Drozak Jakub
Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
Life (Basel). 2021 Oct 2;11(10):1040. doi: 10.3390/life11101040.
SETD3 has been recently identified as a long sought, actin specific histidine methyltransferase that catalyzes the -methylation reaction of histidine 73 (H73) residue in human actin or its equivalent in other metazoans. Its homologs are widespread among multicellular eukaryotes and expressed in most mammalian tissues. SETD3 consists of a catalytic SET domain responsible for transferring the methyl group from -adenosyl-L-methionine (AdoMet) to a protein substrate and a RuBisCO LSMT domain that recognizes and binds the methyl-accepting protein(s). The enzyme was initially identified as a methyltransferase that catalyzes the modification of histone H3 at K4 and K36 residues, but later studies revealed that the only bona fide substrate of SETD3 is H73, in the actin protein. The methylation of actin at H73 contributes to maintaining cytoskeleton integrity, which remains the only well characterized biological effect of SETD3. However, the discovery of numerous novel methyltransferase interactors suggests that SETD3 may regulate various biological processes, including cell cycle and apoptosis, carcinogenesis, response to hypoxic conditions, and enterovirus pathogenesis. This review summarizes the current advances in research on the SETD3 protein, its biological importance, and role in various diseases.
SETD3最近被确定为一种长期寻找的肌动蛋白特异性组氨酸甲基转移酶,它催化人类肌动蛋白中组氨酸73(H73)残基或其他后生动物中其等效残基的甲基化反应。它的同源物在多细胞真核生物中广泛存在,并在大多数哺乳动物组织中表达。SETD3由一个催化SET结构域和一个RuBisCO LSMT结构域组成,催化SET结构域负责将甲基从S-腺苷-L-甲硫氨酸(AdoMet)转移到蛋白质底物上,RuBisCO LSMT结构域识别并结合甲基接受蛋白。该酶最初被鉴定为一种催化组蛋白H3在K4和K36残基处发生修饰的甲基转移酶,但后来的研究表明,SETD3唯一真正的底物是肌动蛋白中的H73。肌动蛋白H73处的甲基化有助于维持细胞骨架的完整性,这仍然是SETD3唯一得到充分表征的生物学效应。然而,大量新型甲基转移酶相互作用分子的发现表明,SETD3可能调节各种生物学过程,包括细胞周期和细胞凋亡、致癌作用、对缺氧条件的反应以及肠道病毒发病机制。本综述总结了SETD3蛋白研究的当前进展、其生物学重要性以及在各种疾病中的作用。
Life (Basel). 2021-10-2
Elife. 2018-12-11
J Biol Chem. 2020-8-7
Biochim Biophys Acta Rev Cancer. 2021-1
Chembiochem. 2023-11-2
Life (Basel). 2022-3-10
Cytoskeleton (Hoboken). 2021-4
NAR Genom Bioinform. 2021-5-22
ChemMedChem. 2021-9-6