Suppr超能文献

细胞转分化和重编程在疾病建模中的作用:对神经和心脏疾病模型的深入了解以及当前的转化策略。

Cell Transdifferentiation and Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models and Current Translational Strategies.

机构信息

AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305-8565, Japan.

Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIITD), Okhla Industrial Estate, New Delhi 110020, India.

出版信息

Cells. 2021 Sep 27;10(10):2558. doi: 10.3390/cells10102558.

Abstract

Cell transdifferentiation and reprogramming approaches in recent times have enabled the manipulation of cell fate by enrolling exogenous/artificial controls. The chemical/small molecule and regulatory components of transcription machinery serve as potential tools to execute cell transdifferentiation and have thereby uncovered new avenues for disease modeling and drug discovery. At the advanced stage, one can believe these methods can pave the way to develop efficient and sensitive gene therapy and regenerative medicine approaches. As we are beginning to learn about the utility of cell transdifferentiation and reprogramming, speculations about its applications in translational therapeutics are being largely anticipated. Although clinicians and researchers are endeavoring to scale these processes, we lack a comprehensive understanding of their mechanism(s), and the promises these offer for targeted and personalized therapeutics are scarce. In the present report, we endeavored to provide a detailed review of the original concept, methods and modalities enrolled in the field of cellular transdifferentiation and reprogramming. A special focus is given to the neuronal and cardiac systems/diseases towards scaling their utility in disease modeling and drug discovery.

摘要

近年来,通过引入外源/人工控制,细胞转分化和重编程方法使细胞命运的操纵成为可能。转录机制的化学/小分子和调节成分可作为执行细胞转分化的潜在工具,从而为疾病建模和药物发现开辟了新途径。在高级阶段,人们可以相信这些方法可以为开发高效和敏感的基因治疗和再生医学方法铺平道路。随着我们开始了解细胞转分化和重编程的用途,人们对其在转化治疗学中的应用的猜测很大程度上是预期的。尽管临床医生和研究人员正在努力扩大这些过程,但我们对其机制缺乏全面的了解,而且这些方法在靶向和个性化治疗方面的应用还很少。在本报告中,我们努力详细回顾细胞转分化和重编程领域中采用的原始概念、方法和模式。特别关注神经元和心脏系统/疾病,以扩大其在疾病建模和药物发现中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaf1/8533873/133830524e82/cells-10-02558-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验