Suppr超能文献

重新设计代谢途径:操纵TOL质粒途径用于烷基苯甲酸的分解代谢

Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates.

作者信息

Ramos J L, Wasserfallen A, Rose K, Timmis K N

出版信息

Science. 1987 Jan 30;235(4788):593-6. doi: 10.1126/science.3468623.

Abstract

Increasing quantities of man-made organic chemicals are released each year into the biosphere. Some of these compounds are both toxic and relatively resistant to physical, chemical, or biological degradation, and they thus constitute an environmental burden of considerable magnitude. Genetic manipulation of microbial catabolic pathways offers a powerful means by which to accelerate evolution of biodegradative routes through which such compounds might be eliminated from the environment. In the experiments described here, a catabolic pathway for alkylbenzoates specified by the TOL plasmid of Pseudomonas was restructured to produce a pathway capable of processing a new substrate, 4-ethylbenzoate. Analysis of critical steps in the TOL pathway that prevent metabolism of 4-ethylbenzoate revealed that this compound fails to induce synthesis of the catabolic enzymes and that one of its metabolic intermediates inactivates catechol 2,3-dioxygenase (C23O), the enzyme that cleaves the aromatic ring. Consequently, the pathway was sequentially modified by recruitment of genes from mutant bacteria selected for their production of either an altered pathway operon regulator that is activated by 4-ethylbenzoate or an altered C23O that is less sensitive to metabolite inactivation. The redesigned pathway was stably expressed and enabled host bacteria to degrade 4-ethylbenzoate in addition to the normal substrates of the TOL pathway.

摘要

每年都有越来越多的人造有机化学物质被释放到生物圈中。其中一些化合物既有毒又相对耐物理、化学或生物降解,因此构成了相当大的环境负担。对微生物分解代谢途径进行基因操作提供了一种强大的手段,通过这种手段可以加速生物降解途径的进化,从而从环境中消除此类化合物。在本文所述的实验中,对由假单胞菌的TOL质粒指定的烷基苯甲酸分解代谢途径进行了重组,以产生一种能够处理新底物4-乙基苯甲酸的途径。对TOL途径中阻止4-乙基苯甲酸代谢的关键步骤进行分析后发现,该化合物不能诱导分解代谢酶的合成,并且其一种代谢中间体可使裂解芳香环的酶儿茶酚2,3-双加氧酶(C23O)失活。因此,通过从突变细菌中招募基因对该途径进行了顺序修饰,这些突变细菌因其产生的由4-乙基苯甲酸激活的改变的途径操纵子调节因子或对代谢物失活不太敏感的改变的C23O而被选择。重新设计的途径得以稳定表达,并使宿主细菌除了能够降解TOL途径的正常底物外,还能降解4-乙基苯甲酸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验