Suppr超能文献

肽疫苗中冷冻保护剂的设备:机理洞察、挑战、机遇与未来前景

Armamentarium of Cryoprotectants in Peptide Vaccines: Mechanistic Insight, Challenges, Opportunities and Future Prospects.

作者信息

Dalvi Harshita, Bhat Aditi, Iyer Akshaya, Sainaga Jyothi Vaskuri G S, Jain Harsha, Srivastava Saurabh, Madan Jitender

机构信息

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037 India.

出版信息

Int J Pept Res Ther. 2021;27(4):2965-2982. doi: 10.1007/s10989-021-10303-y. Epub 2021 Oct 19.

Abstract

Vaccines are designed to leverage the immune system and produce long-lasting protection against specific diseases. Peptide vaccines are regarded as safe and effective way of circumventing problems such as mild allergic reactions associated with conventional vaccines. The biggest challenges associated with formulation of peptide vaccines are stability issues and conformational changes which lead to destruction of their activity when exposed to lyophilization process that may act as stressors. Lyophilization process is aimed at removal of water which involves freezing, primary drying and secondary drying. To safeguard the peptide molecules from such stresses, cryoprotectants are used to offer them viability and structural stability. This paper is an attempt to understand the physicochemical properties of peptide vaccines, mechanism of cryoprotection under the shed of water replacement, water substitution theory and cation-pi interaction theory of amino acids which aims at shielding the peptide from external environment by formation of hydrogen bonds, covalent bonds or cation-pi interaction between cryoprotectant and peptide followed by selection criteria of cryoprotectants and their utility in peptide vaccines development along with challenges and opportunities.

摘要

疫苗旨在利用免疫系统并对特定疾病产生持久保护。肽疫苗被视为规避与传统疫苗相关的轻度过敏反应等问题的安全有效方法。与肽疫苗配方相关的最大挑战是稳定性问题和构象变化,当暴露于可能作为应激源的冻干过程时,这些变化会导致其活性丧失。冻干过程旨在去除水分,包括冷冻、一次干燥和二次干燥。为了保护肽分子免受此类压力,使用冷冻保护剂来赋予它们活力和结构稳定性。本文试图了解肽疫苗的物理化学性质、在水置换、水替代理论以及氨基酸的阳离子-π相互作用理论框架下的冷冻保护机制,该理论旨在通过冷冻保护剂与肽之间形成氢键、共价键或阳离子-π相互作用来保护肽免受外部环境影响,随后介绍冷冻保护剂的选择标准及其在肽疫苗开发中的应用,以及面临的挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faea/8524217/7ae0db70cd21/10989_2021_10303_Fig1_HTML.jpg

相似文献

1
Armamentarium of Cryoprotectants in Peptide Vaccines: Mechanistic Insight, Challenges, Opportunities and Future Prospects.
Int J Pept Res Ther. 2021;27(4):2965-2982. doi: 10.1007/s10989-021-10303-y. Epub 2021 Oct 19.
2
Amino acids as cryoprotectants for liposomal delivery systems.
Eur J Pharm Sci. 2007 Apr;30(5):406-13. doi: 10.1016/j.ejps.2007.01.001. Epub 2007 Jan 19.
3
Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization.
Pharm Res. 2016 Nov;33(11):2777-93. doi: 10.1007/s11095-016-2004-3. Epub 2016 Jul 21.
4
The role of trifunctional cryoprotectants in the frozen storage of aquatic foods: Recent developments and future recommendations.
Compr Rev Food Sci Food Saf. 2022 Jan;21(1):321-339. doi: 10.1111/1541-4337.12865. Epub 2021 Nov 11.
7
Development of a fast-dissolving tablet formulation of a live attenuated enterotoxigenic E. coli vaccine candidate.
Vaccine. 2013 Oct 1;31(42):4759-64. doi: 10.1016/j.vaccine.2013.08.010. Epub 2013 Aug 17.
8
Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins.
Int J Biol Macromol. 2021 Jan 15;167:309-325. doi: 10.1016/j.ijbiomac.2020.11.188. Epub 2020 Dec 1.

引用本文的文献

1
Poloxamer 188 stabilized poly (ε-caprolactone) microspheres of voriconazole for targeting pulmonary aspergillosis.
Ther Deliv. 2025 Feb;16(2):155-166. doi: 10.1080/20415990.2024.2441647. Epub 2024 Dec 23.
2
Freeze-drying revolution: unleashing the potential of lyophilization in advancing drug delivery systems.
Drug Deliv Transl Res. 2024 May;14(5):1111-1153. doi: 10.1007/s13346-023-01477-7. Epub 2023 Nov 20.
3
Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape.
Pharmaceuticals (Basel). 2023 Jul 24;16(7):1054. doi: 10.3390/ph16071054.
4
Identification of natural peptides from "PlantPepDB" database as anti-SARS-CoV-2 agents: A protein-protein docking approach.
Phytomed Plus. 2023 May;3(2):100446. doi: 10.1016/j.phyplu.2023.100446. Epub 2023 Mar 31.
5
Predicting epitopes for vaccine development using bioinformatics tools.
Ther Adv Vaccines Immunother. 2022 May 21;10:25151355221100218. doi: 10.1177/25151355221100218. eCollection 2022.

本文引用的文献

1
Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives.
Front Chem. 2020 Oct 30;8:598160. doi: 10.3389/fchem.2020.598160. eCollection 2020.
2
Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation.
Int J Pharm. 2020 Feb 25;576:119029. doi: 10.1016/j.ijpharm.2020.119029. Epub 2020 Jan 15.
5
Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
Adv Exp Med Biol. 2018;1081:371-383. doi: 10.1007/978-981-13-1244-1_20.
6
Approaches to Improve Chemically Defined Synthetic Peptide Vaccines.
Front Immunol. 2018 Apr 26;9:884. doi: 10.3389/fimmu.2018.00884. eCollection 2018.
7
Factors affecting the physical stability (aggregation) of peptide therapeutics.
Interface Focus. 2017 Dec 6;7(6):20170030. doi: 10.1098/rsfs.2017.0030. Epub 2017 Oct 20.
8
Peptide-based synthetic vaccines.
Chem Sci. 2016 Feb 1;7(2):842-854. doi: 10.1039/c5sc03892h. Epub 2015 Dec 17.
9
Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology.
Chem Soc Rev. 2017 Jul 31;46(15):4661-4708. doi: 10.1039/c6cs00542j.
10
How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions.
Eur J Pharm Biopharm. 2017 May;114:288-295. doi: 10.1016/j.ejpb.2017.01.024. Epub 2017 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验