Tse Lap Hang, Wong Yung Hou
Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR China.
State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, SAR China.
Front Cell Neurosci. 2021 Oct 7;15:725296. doi: 10.3389/fncel.2021.725296. eCollection 2021.
Melatonin receptors are Class A G protein-coupled receptors (GPCRs) that regulate a plethora of physiological activities in response to the rhythmic secretion of melatonin from the pineal gland. Melatonin is a key regulator in the control of circadian rhythm and has multiple functional roles in retinal physiology, memory, immunomodulation and tumorigenesis. The two subtypes of human melatonin receptors, termed MT and MT, utilize overlapping signaling pathways although biased signaling properties have been reported in some cellular systems. With the emerging concept of GPCR dimerization, melatonin receptor heterodimers have been proposed to participate in system-biased signaling. Here, we used computational approaches to map the dimerization interfaces of known heterodimers of melatonin receptors, including MT/MT, MT/GPR50, MT/GPR50, and MT/5-HT . By homology modeling and membrane protein docking analyses, we have identified putative preferred interface interactions within the different pairs of melatonin receptor dimers and provided plausible structural explanations for some of the unique pharmacological features of specific heterodimers previously reported. A thorough understanding of the molecular basis of melatonin receptor heterodimers may enable the development of new therapeutic approaches against aliments involving these heterodimeric receptors.
褪黑素受体属于A类G蛋白偶联受体(GPCRs),可响应松果体节律性分泌的褪黑素调节大量生理活动。褪黑素是昼夜节律控制中的关键调节因子,在视网膜生理、记忆、免疫调节和肿瘤发生中具有多种功能作用。人类褪黑素受体的两种亚型,称为MT1和MT2,利用重叠的信号通路,尽管在一些细胞系统中已报道有偏向性信号特性。随着GPCR二聚化这一新兴概念的出现,有人提出褪黑素受体异二聚体参与系统偏向性信号传导。在此,我们使用计算方法绘制了已知的褪黑素受体异二聚体的二聚化界面,包括MT1/MT2、MT1/GPR50、MT2/GPR50和MT1/5-HT2C。通过同源建模和膜蛋白对接分析,我们确定了不同对褪黑素受体二聚体内假定的优先界面相互作用,并为先前报道的特定异二聚体的一些独特药理学特征提供了合理的结构解释。对褪黑素受体异二聚体分子基础的深入理解可能有助于开发针对涉及这些异二聚体受体的疾病的新治疗方法。