Suppr超能文献

如何测量基粒——植物叶绿体类囊体膜的超微结构特征

How to Measure Grana - Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts.

作者信息

Mazur Radosław, Mostowska Agnieszka, Kowalewska Łucja

机构信息

Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland.

Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.

出版信息

Front Plant Sci. 2021 Oct 6;12:756009. doi: 10.3389/fpls.2021.756009. eCollection 2021.

Abstract

Granum is a basic structural unit of the thylakoid membrane network of plant chloroplasts. It is composed of multiple flattened membranes forming a stacked arrangement of a cylindrical shape. Grana membranes are composed of lipids and tightly packed pigment-protein complexes whose primary role is the catalysis of photosynthetic light reactions. These membranes are highly dynamic structures capable of adapting to changing environmental conditions by fine-tuning photochemical efficiency, manifested by the structural reorganization of grana stacks. Due to a nanometer length scale of the structural granum features, the application of high-resolution electron microscopic techniques is essential for a detailed analysis of the granum architecture. This mini-review overviews recent approaches to quantitative grana structure analyses from electron microscopy data, highlighting the basic manual measurements and semi-automated workflows. We outline and define structural parameters used by different authors, for instance, granum height and diameter, thylakoid thickness, end-membrane length, Stacking Repeat Distance, and Granum Lateral Irregularity. This article also presents insights into efficient and effective measurements of grana stacks visualized on 2D micrographs. The information on how to correctly interpret obtained data, taking into account the 3D nature of grana stacks projected onto 2D space of electron micrograph, is also given. Grana ultrastructural observations reveal key features of this intriguing membrane arrangement, broadening our knowledge of the thylakoid network's remarkable plasticity.

摘要

基粒是植物叶绿体类囊体膜网络的基本结构单位。它由多个扁平膜组成,形成圆柱形的堆叠排列。基粒膜由脂质和紧密堆积的色素 - 蛋白质复合物组成,其主要作用是催化光合作用的光反应。这些膜是高度动态的结构,能够通过微调光化学效率来适应不断变化的环境条件,这表现为基粒堆叠的结构重组。由于基粒结构特征的纳米长度尺度,高分辨率电子显微镜技术的应用对于详细分析基粒结构至关重要。这篇小型综述概述了从电子显微镜数据进行基粒结构定量分析的最新方法,重点介绍了基本的手动测量和半自动工作流程。我们概述并定义了不同作者使用的结构参数,例如基粒高度和直径、类囊体厚度、端膜长度、堆叠重复距离和基粒横向不规则性。本文还介绍了对二维显微照片上可视化的基粒堆叠进行高效测量的见解。同时还给出了关于如何正确解释所获数据的信息,要考虑到基粒堆叠投影到电子显微镜二维空间的三维性质。基粒超微结构观察揭示了这种有趣膜排列的关键特征,拓宽了我们对类囊体网络显著可塑性的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d940/8527009/90d144e3e177/fpls-12-756009-g001.jpg

相似文献

1
How to Measure Grana - Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts.
Front Plant Sci. 2021 Oct 6;12:756009. doi: 10.3389/fpls.2021.756009. eCollection 2021.
4
Structure and dynamics of thylakoids in land plants.
J Exp Bot. 2014 May;65(8):1955-72. doi: 10.1093/jxb/eru090. Epub 2014 Mar 12.
6
Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma.
Photosynth Res. 2008 Oct-Dec;98(1-3):575-87. doi: 10.1007/s11120-008-9381-3. Epub 2008 Nov 8.
7
Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature.
Plant Cell. 2013 Jul;25(7):2661-78. doi: 10.1105/tpc.113.113118. Epub 2013 Jul 9.
8
Why do thylakoid membranes from higher plants form grana stacks?
Trends Biochem Sci. 1993 Nov;18(11):415-9. doi: 10.1016/0968-0004(93)90136-b.
9
Structural constraints for protein repair in plant photosynthetic membranes.
Plant Signal Behav. 2013 Apr;8(4):e23634. doi: 10.4161/psb.23634. Epub 2013 Jan 18.
10
Expansion microscopy resolves the thylakoid structure of spinach.
Plant Physiol. 2023 Dec 30;194(1):347-358. doi: 10.1093/plphys/kiad526.

引用本文的文献

2
5
Defining the heterogeneous composition of Arabidopsis thylakoid membrane.
Plant J. 2025 Feb;121(3):e17259. doi: 10.1111/tpj.17259.
7
Regulation of Microalgal Photosynthetic Electron Transfer.
Plants (Basel). 2024 Jul 29;13(15):2103. doi: 10.3390/plants13152103.
9
Structure, biogenesis, and evolution of thylakoid membranes.
Plant Cell. 2024 Oct 3;36(10):4014-4035. doi: 10.1093/plcell/koae102.
10
Diversification of Plastid Structure and Function in Land Plants.
Methods Mol Biol. 2024;2776:63-88. doi: 10.1007/978-1-0716-3726-5_4.

本文引用的文献

1
Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity.
Cell. 2021 Jul 8;184(14):3643-3659.e23. doi: 10.1016/j.cell.2021.05.011. Epub 2021 Jun 23.
2
Small-Angle X-Ray and Neutron Scattering on Photosynthetic Membranes.
Front Chem. 2021 Apr 19;9:631370. doi: 10.3389/fchem.2021.631370. eCollection 2021.
3
Reply to: Is the debate over grana stacking formation finally solved?
Nat Plants. 2021 Mar;7(3):279-281. doi: 10.1038/s41477-021-00881-6. Epub 2021 Mar 11.
4
Is the debate over grana stacking formation finally solved?
Nat Plants. 2021 Mar;7(3):277-278. doi: 10.1038/s41477-021-00880-7. Epub 2021 Mar 11.
7
Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I.
Nat Plants. 2021 Jan;7(1):87-98. doi: 10.1038/s41477-020-00828-3. Epub 2021 Jan 11.
8
Determinants, and implications, of the shape and size of thylakoids and cristae.
J Plant Physiol. 2021 Feb;257:153342. doi: 10.1016/j.jplph.2020.153342. Epub 2020 Dec 15.
9
Measuring the dynamic response of the thylakoid architecture in plant leaves by electron microscopy.
Plant Direct. 2020 Nov 5;4(11):e00280. doi: 10.1002/pld3.280. eCollection 2020 Nov.
10
Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis.
Plant J. 2021 Jan;105(1):223-244. doi: 10.1111/tpj.15053. Epub 2020 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验