Hu Qingyang, Liu Jin, Chen Jiuhua, Yan Bingmin, Meng Yue, Prakapenka Vitali B, Mao Wendy L, Mao Ho-Kwang
Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100094, China.
Center for Study of Matter under Extreme Conditions, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33199, USA.
Natl Sci Rev. 2020 May 13;8(4):nwaa098. doi: 10.1093/nsr/nwaa098. eCollection 2021 Apr.
Understanding the mineralogy of the Earth's interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800-2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with HO to form a previously unknown (Mg, Fe)OH ( ≤ 1) phase. The (Mg, Fe)OH has a pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (MgFe)O or beyond 2300 km for (MgFe)O. The (Mg, Fe)OH is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg, Fe and H). This important phase has a number of far-reaching implications including extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM and an internal source for modulating oxygen in the atmosphere.
了解地球内部的矿物学是揭示我们这个星球演化和动力学的先决条件。在此,我们进行了高压-高温实验,模拟了下地幔深部(深度1800 - 2890千米)的条件,并观察到在有水存在的情况下令人惊讶的矿物转变。铁方镁石,(Mg, Fe)O,是地球上最丰富的氧化物矿物,它与HO反应形成一种先前未知的(Mg, Fe)OH (≤1)相。(Mg, Fe)OH 具有黄铁矿结构,它与主要的硅酸盐相——布里奇曼石和后钙钛矿共存。根据镁含量和地热温度,对于(MgFe)O,这种转变可能在1800千米处发生,而对于(MgFe)O,则可能在2300千米以上发生。(Mg, Fe)OH 是一个氧过剩相,它储存了超过最大阳离子价态(Mg、Fe和H)电荷平衡的过量氧。这个重要的相具有许多深远的影响,包括极端的氧化还原不均匀性、下地幔深部的深部氧储库以及大气中调节氧的内部来源。