Suppr超能文献

NEXTorch:化学科学与工程的设计和贝叶斯优化工具包。

NEXTorch: A Design and Bayesian Optimization Toolkit for Chemical Sciences and Engineering.

机构信息

Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States.

Catalysis Center for Energy Innovation, RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), University of Delaware, 221 Academy St., Newark, Delaware 19716, United States.

出版信息

J Chem Inf Model. 2021 Nov 22;61(11):5312-5319. doi: 10.1021/acs.jcim.1c00637. Epub 2021 Oct 25.

Abstract

Automation and optimization of chemical systems require well-informed decisions on what experiments to run to reduce time, materials, and/or computations. Data-driven active learning algorithms have emerged as valuable tools to solve such tasks. Bayesian optimization, a sequential global optimization approach, is a popular active-learning framework. Past studies have demonstrated its efficiency in solving chemistry and engineering problems. We introduce NEXTorch, a library in Python/PyTorch, to facilitate laboratory or computational design using Bayesian optimization. NEXTorch offers fast predictive modeling, flexible optimization loops, visualization capabilities, easy interfacing with legacy software, and multiple types of parameters and data type conversions. It provides GPU acceleration, parallelization, and state-of-the-art Bayesian optimization algorithms and supports both automated and human-in-the-loop optimization. The comprehensive online documentation introduces Bayesian optimization theory and several examples from catalyst synthesis, reaction condition optimization, parameter estimation, and reactor geometry optimization. NEXTorch is open-source and available on GitHub.

摘要

自动化和优化化学系统需要做出明智的决策,以确定要进行哪些实验,从而减少时间、材料和/或计算量。数据驱动的主动学习算法已成为解决此类任务的有价值工具。贝叶斯优化是一种顺序全局优化方法,是一种流行的主动学习框架。过去的研究已经证明了它在解决化学和工程问题方面的效率。我们引入了 NEXTorch,这是一个用 Python/PyTorch 编写的库,用于使用贝叶斯优化促进实验室或计算设计。NEXTorch 提供快速的预测建模、灵活的优化循环、可视化功能、与传统软件的轻松接口以及多种类型的参数和数据类型转换。它提供 GPU 加速、并行化以及最先进的贝叶斯优化算法,并支持自动和人机交互优化。全面的在线文档介绍了贝叶斯优化理论以及催化剂合成、反应条件优化、参数估计和反应器几何优化等方面的几个示例。NEXTorch 是开源的,并可在 GitHub 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验