Jiang Quan, Tian Mengyang, Liu Jianmin, Mo Jiawei
School of Artificial Intelligence, Guangxi Minzu University, No. 188, Daxue East Road, Xixiangtang District, Guangxi, Nanning 530006, China.
Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, No. 188, Daxue East Road, Xixiangtang District, Guangxi, Nanning 530006, China.
ACS Omega. 2025 Aug 8;10(32):36733-36742. doi: 10.1021/acsomega.5c06476. eCollection 2025 Aug 19.
In the research and industrial production of chemical synthesis, identifying suitable general reaction conditions is critical. However, chemical reactions typically involve multiple factors, including catalysts, solvents, temperature, and reaction time, and the optimal conditions for a single substrate are often not applicable to others. To address this limitation, this study proposes a bidirectional general reaction condition optimization framework that integrates the multiarmed bandit algorithm and regression model. The framework first utilizes the multiarmed bandit algorithm to dynamically balance exploration and exploitation in reaction condition selection. Then, a regression model, combined with molecular representation and a per-substrate selective model training strategy, is used to select substrates, thereby improving the accuracy of the general reaction condition optimization. Experimental results demonstrate that this framework exhibits high efficiency and strong adaptability across diverse reaction data sets. In two data sets with comparable numbers of substrates and reaction conditions, the framework achieves accuracy improvements of 20% and 15% over state-of-the-art models. Furthermore, the framework maintains robust optimization performance in two specialized data setsone featuring extensive substrate combinations and the other containing numerous condition combinationsfurther validating its effectiveness. We propose a bidirectional general reaction condition optimization framework that integrates the multiarmed bandit algorithm and regression model. The framework first utilizes the multiarmed bandit algorithm to dynamically balance exploration and exploitation in reaction condition selection. Then, a regression model, combined with molecular representation and a per-substrate selective model training strategy, is used to select substrates, thereby improving the accuracy of the general reaction condition optimization. Experimental results demonstrate that this framework achieves high efficiency and strong adaptability across diverse reaction data sets.
在化学合成的研究和工业生产中,确定合适的通用反应条件至关重要。然而,化学反应通常涉及多个因素,包括催化剂、溶剂、温度和反应时间,而且单一底物的最佳条件往往不适用于其他底物。为了解决这一局限性,本研究提出了一种双向通用反应条件优化框架,该框架整合了多臂赌博机算法和回归模型。该框架首先利用多臂赌博机算法在反应条件选择中动态平衡探索和利用。然后,结合分子表示和每个底物的选择性模型训练策略的回归模型用于选择底物,从而提高通用反应条件优化的准确性。实验结果表明,该框架在不同的反应数据集上表现出高效率和强适应性。在两个底物数量和反应条件数量相当的数据集中,该框架比现有模型的准确率提高了20%和15%。此外,该框架在两个专门的数据集中保持了强大的优化性能,一个数据集具有广泛的底物组合,另一个包含大量的条件组合,进一步验证了其有效性。我们提出了一种整合多臂赌博机算法和回归模型的双向通用反应条件优化框架。该框架首先利用多臂赌博机算法在反应条件选择中动态平衡探索和利用。然后,结合分子表示和每个底物的选择性模型训练策略的回归模型用于选择底物,从而提高通用反应条件优化的准确性。实验结果表明,该框架在不同的反应数据集上实现了高效率和强适应性。