Suppr超能文献

新发非小细胞肺癌患者静脉血栓栓塞症预测评分的建立与验证。

Development and validation of a predictive score for venous thromboembolism in newly diagnosed non-small cell lung cancer.

机构信息

Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.

School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.

出版信息

Thromb Res. 2021 Dec;208:45-51. doi: 10.1016/j.thromres.2021.10.013. Epub 2021 Oct 21.

Abstract

INTRODUCTION

The risk of venous thromboembolism (VTE) varies among tumour types, and different cancer type-specific risks for VTE prediction remain undefined. We aimed to establish a prediction model for non-small lung cancer (NSCLC)-associated VTE.

MATERIALS AND METHODS

We analysed data from a prospective cohort of patients with newly diagnosed NSCLC. We then developed a VTE risk prediction model using data of patients who were recruited from 2013 to 2017 (n = 602, development cohort) and validated this model using date of patients recruited from 2018 to 2019 (n = 412, validation cohort). The cumulative 6 months VTE incidence observed in both cohorts was calculated.

RESULTS

The parameters in this new model included Eastern Cooperative Oncology Group (ECOG) performance status ≥2 (1 point), EGFR mutation (-1 point), neutrophil count ≥7.5 × 10/L (2 points), hemoglobin <115 g/L (1 point), CEA ≥5.0 ng/mL (2 points), and D-dimer level ≥1400 ng/mL (4 points). The cross-validated concordance indices of the model in the development and validation cohorts were 0.779 and 0.853, respectively. Furthermore, the areas under the curve in the two cohorts were 0.7563 (95% confidence interval [CI]: 0.6856-0.8129, P < 0.001) and 0.8211 (95% CI: 0.7451-0.8765, P < 0.001) for development and validation cohorts, respectively.

CONCLUSIONS

The new VTE risk prediction model incorporated patient characteristics, laboratory values, and oncogenic status, and was able to stratify patients at high risk of VTE in newly diagnosed NSCLC within 6 months of diagnosis.

摘要

简介

静脉血栓栓塞症(VTE)的风险因肿瘤类型而异,不同的癌症类型特异性 VTE 预测风险仍未确定。我们旨在建立一种非小细胞肺癌(NSCLC)相关 VTE 的预测模型。

材料和方法

我们分析了一组新诊断 NSCLC 患者的前瞻性队列数据。然后,我们使用 2013 年至 2017 年招募的患者的数据(n=602,开发队列)开发了 VTE 风险预测模型,并使用 2018 年至 2019 年招募的患者的数据(n=412,验证队列)验证了该模型。计算了两个队列中观察到的 6 个月累积 VTE 发生率。

结果

该新模型的参数包括东部肿瘤协作组(ECOG)表现状态≥2(1 分)、EGFR 突变(-1 分)、中性粒细胞计数≥7.5×10/L(2 分)、血红蛋白<115g/L(1 分)、CEA≥5.0ng/mL(2 分)和 D-二聚体水平≥1400ng/mL(4 分)。模型在开发和验证队列中的交叉验证一致性指数分别为 0.779 和 0.853。此外,两个队列的曲线下面积分别为 0.7563(95%置信区间 [CI]:0.6856-0.8129,P<0.001)和 0.8211(95% CI:0.7451-0.8765,P<0.001)。

结论

新的 VTE 风险预测模型纳入了患者特征、实验室值和致癌状态,可以对新诊断的 NSCLC 患者在诊断后 6 个月内的 VTE 高危患者进行分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验