Suppr超能文献

基于 RPPG 和 RBCG 的面部视频心率估计融合方法。

Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG.

机构信息

Department of Emotion Engineering, Sangmyung University, Seoul 03016, Korea.

Department of Intelligence Informatics Engineering, Sangmyung University, Seoul 03016, Korea.

出版信息

Sensors (Basel). 2021 Oct 12;21(20):6764. doi: 10.3390/s21206764.

Abstract

Remote sensing of vital signs has been developed to improve the measurement environment by using a camera without a skin-contact sensor. The camera-based method is based on two concepts, namely color and motion. The color-based method, remote photoplethysmography (RPPG), measures the color variation of the face generated by reflectance of blood, whereas the motion-based method, remote ballistocardiography (RBCG), measures the subtle motion of the head generated by heartbeat. The main challenge of remote sensing is overcoming the noise of illumination variance and motion artifacts. The studies on remote sensing have focused on the blind source separation (BSS) method for RGB colors or motions of multiple facial points to overcome the noise. However, they have still been limited in their real-world applications. This study hypothesized that BSS-based combining of colors and the motions can improve the accuracy and feasibility of remote sensing in daily life. Thus, this study proposed a fusion method to estimate heart rate based on RPPG and RBCG by the BSS methods such as ensemble averaging (EA), principal component analysis (PCA), and independent component analysis (ICA). The proposed method was verified by comparing it with previous RPPG and RBCG from three datasets according to illumination variance and motion artifacts. The three main contributions of this study are as follows: (1) the proposed method based on RPPG and RBCG improved the remote sensing with the benefits of each measurement; (2) the proposed method was demonstrated by comparing it with previous methods; and (3) the proposed method was tested in various measurement conditions for more practical applications.

摘要

生命体征的远程传感技术已经发展到了一个新的阶段,其目的是通过使用无需接触皮肤的传感器的摄像头来改善测量环境。基于摄像头的方法基于两个概念,即颜色和运动。基于颜色的方法,即远程光体积描记法(RPPG),通过测量血液反射产生的面部颜色变化来测量生命体征;基于运动的方法,即远程心冲击描记法(RBCG),通过测量由心跳产生的头部微妙运动来测量生命体征。远程传感的主要挑战是克服光照变化和运动伪影的噪声。远程传感的研究主要集中在用于分离 RGB 颜色或多个面部点运动的盲源分离(BSS)方法上,以克服噪声。然而,它们在实际应用中仍然受到限制。本研究假设基于 BSS 的颜色和运动的组合可以提高日常生活中远程传感的准确性和可行性。因此,本研究提出了一种融合方法,通过 BSS 方法(如集合平均法(EA)、主成分分析(PCA)和独立成分分析(ICA))基于 RPPG 和 RBCG 估计心率。该方法通过与三个数据集的先前 RPPG 和 RBCG 进行比较,根据光照变化和运动伪影验证了其有效性。本研究的三个主要贡献如下:(1)基于 RPPG 和 RBCG 的提出的方法通过提高每个测量的优势,提高了远程传感的性能;(2)通过与以前的方法进行比较,证明了该方法的有效性;(3)在各种测量条件下对该方法进行了测试,以实现更实际的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7962/8538239/cf12209e5f30/sensors-21-06764-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验