Suppr超能文献

工业多阶段机器的维护策略:热成型机的研究。

Maintenance Strategies for Industrial Multi-Stage Machines: The Study of a Thermoforming Machine.

机构信息

Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Avda. Elvas s/n, 06006 Badajoz, Spain.

出版信息

Sensors (Basel). 2021 Oct 13;21(20):6809. doi: 10.3390/s21206809.

Abstract

The study of reliability, availability and control of industrial manufacturing machines is a constant challenge in the industrial environment. This paper compares the results offered by several maintenance strategies for multi-stage industrial manufacturing machines by analysing a real case of a multi-stage thermoforming machine. Specifically, two strategies based on preventive maintenance, Preventive Programming Maintenance (PPM) and Improve Preventive Programming Maintenance (IPPM) are compared with two new strategies based on predictive maintenance, namely Algorithm Life Optimisation Programming (ALOP) and Digital Behaviour Twin (DBT). The condition of machine components can be assessed with the latter two proposals (ALOP and DBT) using sensors and algorithms, thus providing a warning value for early decision-making before unexpected faults occur. The study shows that the ALOP and DBT models detect unexpected failures early enough, while the PPM and IPPM strategies warn of scheduled component replacement at the end of their life cycle. The ALOP and DBT strategies algorithms can also be valid for managing the maintenance of other multi-stage industrial manufacturing machines. The authors consider that the combination of preventive and predictive maintenance strategies may be an ideal approach because operating conditions affect the mechanical, electrical, electronic and pneumatic components of multi-stage industrial manufacturing machines differently.

摘要

工业制造机器的可靠性、可用性和控制研究是工业环境中的一个持续挑战。本文通过分析一台多阶段热成型机的实际案例,比较了几种针对多阶段工业制造机器的维护策略所提供的结果。具体来说,将基于预防性维护的两种策略,即预防性编程维护(PPM)和改进预防性编程维护(IPPM),与基于预测性维护的两种新策略,即算法寿命优化编程(ALOP)和数字行为孪生(DBT)进行了比较。后两种提议(ALOP 和 DBT)可以使用传感器和算法评估机器部件的状况,从而在发生意外故障之前提供早期决策的警告值。研究表明,ALOP 和 DBT 模型能够及早检测到意外故障,而 PPM 和 IPPM 策略则在组件生命周期结束时警告预定的部件更换。ALOP 和 DBT 策略算法也可用于管理其他多阶段工业制造机器的维护。作者认为,预防性和预测性维护策略的结合可能是一种理想的方法,因为运行条件会对多阶段工业制造机器的机械、电气、电子和气动部件产生不同的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcbd/8540972/dd724f71006d/sensors-21-06809-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验