Suppr超能文献

医疗设备的优先级评估和稳健预测系统:全面的战略维护管理。

Prioritisation Assessment and Robust Predictive System for Medical Equipment: A Comprehensive Strategic Maintenance Management.

机构信息

Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.

Engineering Services Department, Ministry of Health Malaysia, Putrajaya, Malaysia.

出版信息

Front Public Health. 2021 Nov 17;9:782203. doi: 10.3389/fpubh.2021.782203. eCollection 2021.

Abstract

The advancement of technology in medical equipment has significantly improved healthcare services. However, failures in upkeeping reliability, availability, and safety affect the healthcare services quality and significant impact can be observed in operations' expenses. The effective and comprehensive medical equipment assessment and monitoring throughout the maintenance phase of the asset life cycle can enhance the equipment reliability, availability, and safety. The study aims to develop the prioritisation assessment and predictive systems that measure the priority of medical equipment's preventive maintenance, corrective maintenance, and replacement programmes. The proposed predictive model is constructed by analysing features of 13,352 medical equipment used in public healthcare clinics in Malaysia. The proposed system comprises three stages: prioritisation analysis, model training, and predictive model development. In this study, we proposed 16 combinations of novel features to be used for prioritisation assessment and prediction of preventive maintenance, corrective maintenance, and replacement programme. The modified k-Means algorithm is proposed during the prioritisation analysis to automatically distinguish raw data into three main clusters of prioritisation assessment. Subsequently, these clusters are fed into and tested with six machine learning algorithms for the predictive prioritisation system. The best predictive models for medical equipment's preventive maintenance, corrective maintenance, and replacement programmes are selected among the tested machine learning algorithms. Findings indicate that the Support Vector Machine performs the best in preventive maintenance and replacement programme prioritisation predictive systems with the highest accuracy of 99.42 and 99.80%, respectively. Meanwhile, K-Nearest Neighbour yielded the highest accuracy in corrective maintenance prioritisation predictive systems with 98.93%. Based on the promising results, clinical engineers and healthcare providers can widely adopt the proposed prioritisation assessment and predictive systems in managing expenses, reporting, scheduling, materials, and workforce.

摘要

医疗设备技术的进步极大地改善了医疗服务。然而,可靠性、可用性和安全性维护方面的失败会影响医疗服务质量,并且在运营费用方面会产生显著影响。在资产生命周期的维护阶段,对医疗设备进行有效和全面的评估和监测,可以提高设备的可靠性、可用性和安全性。本研究旨在开发优先排序评估和预测系统,以衡量医疗设备预防性维护、纠正性维护和更换计划的优先级。所提出的预测模型是通过分析马来西亚公共医疗诊所使用的 13352 台医疗设备的特征构建的。所提出的系统包括三个阶段:优先级分析、模型训练和预测模型开发。在这项研究中,我们提出了 16 种新特征组合,用于进行优先级评估和预测预防性维护、纠正性维护和更换计划。在优先级分析中提出了改进的 K-Means 算法,以自动将原始数据分为三个主要优先级评估集群。随后,将这些集群输入并与六种机器学习算法一起测试,以用于预测优先级系统。在经过测试的机器学习算法中,选择了用于医疗设备预防性维护、纠正性维护和更换计划的最佳预测模型。研究结果表明,支持向量机在预防性维护和更换计划的优先级预测系统中表现最佳,准确率分别为 99.42%和 99.80%。而 K-最近邻在纠正性维护优先级预测系统中的准确率最高,为 98.93%。基于这些有前景的结果,临床工程师和医疗保健提供者可以广泛采用所提出的优先级评估和预测系统来管理费用、报告、调度、材料和劳动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9255/8637834/3693e4476117/fpubh-09-782203-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验