Suppr超能文献

利用建筑物兴趣点和TerraSAR-X凝视聚光灯数据的城市地区层析合成孔径雷达成像联合稀疏性

Joint Sparsity for TomoSAR Imaging in Urban Areas Using Building POI and TerraSAR-X Staring Spotlight Data.

作者信息

Pang Lei, Gai Yanfeng, Zhang Tian

机构信息

School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China.

School of Geosciences and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.

出版信息

Sensors (Basel). 2021 Oct 17;21(20):6888. doi: 10.3390/s21206888.

Abstract

Synthetic aperture radar (SAR) tomography (TomoSAR) can obtain 3D imaging models of observed urban areas and can also discriminate different scatters in an azimuth-range pixel unit. Recently, compressive sensing (CS) has been applied to TomoSAR imaging with the use of very-high-resolution (VHR) SAR images delivered by modern SAR systems, such as TerraSAR-X and TanDEM-X. Compared with the traditional Fourier transform and spectrum estimation methods, using sparse information for TomoSAR imaging can obtain super-resolution power and robustness and is only minorly impacted by the sidelobe effect. However, due to the tight control of SAR satellite orbit, the number of acquisitions is usually too low to form a synthetic aperture in the elevation direction, and the baseline distribution of acquisitions is also uneven. In addition, artificial outliers may easily be generated in later TomoSAR processing, leading to a poor mapping product. Focusing on these problems, by synthesizing the opinions of various experts and scholarly works, this paper briefly reviews the research status of sparse TomoSAR imaging. Then, a joint sparse imaging algorithm, based on the building points of interest (POIs) and maximum likelihood estimation, is proposed to reduce the number of acquisitions required and reject the scatterer outliers. Moreover, we adopted the proposed novel workflow in the TerraSAR-X datasets in staring spotlight (ST) work mode. The experiments on simulation data and TerraSAR-X data stacks not only indicated the effectiveness of the proposed approach, but also proved the great potential of producing a high-precision dense point cloud from staring spotlight (ST) data.

摘要

合成孔径雷达(SAR)层析成像(TomoSAR)能够获取观测城区的三维成像模型,还能在方位-距离像素单元中区分不同的散射体。近年来,压缩感知(CS)已被应用于TomoSAR成像,采用的是由现代SAR系统(如TerraSAR-X和TanDEM-X)提供的超高分辨率(VHR)SAR图像。与传统的傅里叶变换和频谱估计方法相比,利用稀疏信息进行TomoSAR成像能够获得超分辨率能力和鲁棒性,并且受旁瓣效应的影响较小。然而,由于SAR卫星轨道的严格控制,采集的数量通常过少,无法在仰角方向形成合成孔径,而且采集的基线分布也不均匀。此外,在后续的TomoSAR处理中可能很容易产生人为异常值,导致测绘产品质量不佳。针对这些问题,本文综合各位专家和学术著作的观点,简要回顾了稀疏TomoSAR成像的研究现状。然后,提出了一种基于感兴趣建筑点(POI)和最大似然估计的联合稀疏成像算法,以减少所需的采集数量并剔除散射体异常值。此外,我们在凝视聚光灯(ST)工作模式下的TerraSAR-X数据集中采用了所提出的新颖工作流程。对模拟数据和TerraSAR-X数据堆栈进行的实验不仅表明了所提方法的有效性,还证明了从凝视聚光灯(ST)数据生成高精度密集点云的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0e7/8541257/0d91251f16ea/sensors-21-06888-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验