Suppr超能文献

机器学习预测涎腺癌患者辅助(放)化疗后复发

Prediction of Recurrence by Machine Learning in Salivary Gland Cancer Patients After Adjuvant (Chemo)Radiotherapy.

机构信息

Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy;

Department of Oral and Maxillo Facial Sciences, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.

出版信息

In Vivo. 2021 Nov-Dec;35(6):3355-3360. doi: 10.21873/invivo.12633.

Abstract

BACKGROUND/AIM: To investigate survival outcomes and recurrence patterns using machine learning in patients with salivary gland malignant tumor (SGMT) undergoing adjuvant chemoradiotherapy (CRT).

PATIENTS AND METHODS

Consecutive SGMT patients were identified, and a data set included nine predictor variables and a dependent variable [disease-free survival (DFS) event] was standardized. The open-source R software was used. Survival outcomes were estimated by the Kaplan-Meier method. The random forest approach was used to select the important explanatory variables. A classification tree that optimally partitioned SGMT patients with different DFS rates was built.

RESULTS

In total, 54 SGMT patients were included in the final analysis. Five-year DFS was 62.1%. The top two important variables identified were pathologic node (pN) and pathologic tumor (pT). Based on these explanatory variables, patients were partitioned in three groups, including pN0, pT1-2 pN+ and pT3-4 pN+ with 26%, 38% and 75% probability of recurrence, respectively. Accordingly, 5-year DFS rates were 73.7%, 57.1% and 34.3%, respectively.

CONCLUSION

The proposed decision tree algorithm is an appropriate tool to partition SGMT patients. It can guide decision-making and future research in the SGMT field.

摘要

背景/目的:利用机器学习研究接受辅助放化疗(CRT)的涎腺癌(SGMT)患者的生存结果和复发模式。

方法

连续纳入 SGMT 患者,建立一个包含九个预测变量和一个因变量(无病生存(DFS)事件)的数据集并进行标准化。使用开源 R 软件。采用 Kaplan-Meier 法估计生存结果。采用随机森林法选择重要的解释变量。构建一个分类树,以最优方式划分具有不同 DFS 率的 SGMT 患者。

结果

共纳入 54 例 SGMT 患者进行最终分析。5 年 DFS 率为 62.1%。确定的前两个重要变量是病理淋巴结(pN)和病理肿瘤(pT)。基于这些解释变量,患者被分为三组,包括 pN0、pT1-2 pN+和 pT3-4 pN+,复发概率分别为 26%、38%和 75%。相应地,5 年 DFS 率分别为 73.7%、57.1%和 34.3%。

结论

提出的决策树算法是一种划分 SGMT 患者的合适工具。它可以为 SGMT 领域的决策和未来研究提供指导。

相似文献

本文引用的文献

5
Follow-up program in head and neck cancer.头颈部癌症随访项目。
Crit Rev Oncol Hematol. 2017 May;113:151-155. doi: 10.1016/j.critrevonc.2017.03.012. Epub 2017 Mar 14.
8
Outcomes after primary or adjuvant radiotherapy for salivary gland carcinoma.唾液腺癌原发性或辅助性放疗后的结局。
Acta Oncol. 2017 Mar;56(3):484-489. doi: 10.1080/0284186X.2016.1253863. Epub 2016 Nov 16.
9
Multidisciplinary Management of Salivary Gland Cancers.唾液腺癌的多学科管理
Cancer Control. 2016 Jul;23(3):242-8. doi: 10.1177/107327481602300307.
10
Machine learning applications in cancer prognosis and prediction.机器学习在癌症预后和预测中的应用。
Comput Struct Biotechnol J. 2014 Nov 15;13:8-17. doi: 10.1016/j.csbj.2014.11.005. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验