Suppr超能文献

制备长单链 DNA 串联体以实现高水平荧光原位杂交。

Preparation of long single-strand DNA concatemers for high-level fluorescence in situ hybridization.

机构信息

Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

School of Biomedical Engineering, Hainan University, Haikou, 570228, China.

出版信息

Commun Biol. 2021 Oct 25;4(1):1224. doi: 10.1038/s42003-021-02762-2.

Abstract

Fluorescence in situ hybridization (FISH) is a powerful tool to visualize transcripts in fixed cells and tissues. Despite the recent advances in FISH detection methods, it remains challenging to achieve high-level FISH imaging with a simple workflow. Here, we introduce a method to prepare long single-strand DNA concatemers (lssDNAc) through a controllable rolling-circle amplification (CRCA). Prepared lssDNAcs are used to develop AmpFISH workflows. In addition, we present its applications in different scenarios. AmpFISH shows the following advantages: 1) enhanced FISH signal-to-noise ratio (SNR) up to 160-fold compared with single-molecule FISH; 2) simultaneous detection of FISH signals and fluorescent proteins or immunofluorescence (IF) in tissues; 3) simple workflows; and 4) cost-efficiency. In brief, AmpFISH provides convenient and versatile tools for sensitive RNA/DNA detection and to gain useful information on cellular molecules using simple workflows.

摘要

荧光原位杂交(FISH)是一种在固定细胞和组织中可视化转录本的强大工具。尽管 FISH 检测方法最近取得了进展,但仍难以用简单的工作流程实现高水平的 FISH 成像。在这里,我们介绍了一种通过可控滚环扩增(CRCA)制备长单链 DNA 串联体(lssDNAc)的方法。制备的 lssDNAcs 用于开发 AmpFISH 工作流程。此外,我们还介绍了其在不同场景下的应用。AmpFISH 具有以下优点:1)与单分子 FISH 相比,FISH 信号与噪声比(SNR)提高了 160 倍;2)在组织中同时检测 FISH 信号和荧光蛋白或免疫荧光(IF);3)简单的工作流程;4)具有成本效益。总之,AmpFISH 为敏感的 RNA/DNA 检测提供了便捷、通用的工具,并通过简单的工作流程获得有关细胞分子的有用信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93a0/8545947/60ed7a8d174f/42003_2021_2762_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验