Suppr超能文献

磁共振指纹残留信号可以分离人类灰质区域。

Magnetic resonance fingerprinting residual signals can disassociate human grey matter regions.

机构信息

Centre for Advanced Imaging, The University of Queensland, Building 57, Research Road, Brisbane, QLD, 4072, Australia.

ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Building 57, Research Road, Brisbane, QLD, 4072, Australia.

出版信息

Brain Struct Funct. 2022 Jan;227(1):313-329. doi: 10.1007/s00429-021-02402-9. Epub 2021 Oct 25.

Abstract

The importance of accurate structural discrimination of the human grey matter regions has motivated the development of observer-independent reproducible methods that account for inter-individual architectonic variations. We introduce a non-invasive statistical residual analysis framework, employing unique tissue-specific magnetic resonance fingerprinting (MRF) signals after adjusting for the effect of T and T MR relaxometry parameters (here termed MRF residuals). A 7 T Siemens MR scanner was used to acquire MRF signals, quantitative transmit magnetic field (B) maps and T-weighted anatomical images of eleven cortical areas (5L, 5M, 5Ci, 7A, 7P, 7PC, hIP3, BA2, BA4a, BA4p and BA6) from six female participants. MRF residual signal for each voxel was calculated as the difference between the actual and best matching MRF signal evolutions from a precomputed MRF dictionary covering a range of T, T and B values. To compare MRF residuals between regions of interest, normalised autocorrelation was used as a shape-based statistical signal characterisation method and the Euclidean distance between autocorrelation profiles of residuals was used to measure the interareal dissimilarity. In the eleven cortical areas in both cerebral hemispheres of six participants, the proposed MRF residual analysis consistently showed interareal dissimilarity profiles that concorded with histological studies, indicating that MRF residuals potentially contain tissue microstructural information. MRF residual signals provide additional area-specific information that is complementary to the MR relaxometry-based (T, T) information used previously for distinguishing microstructural differences between human cerebral cortex regions in vivo. The proposed approach led to more accurate identification of structural variations across cortical areas of interest.

摘要

准确区分人脑灰质区域的结构对于推动观察者独立且可重现的方法的发展至关重要,这些方法考虑了个体间结构的变化。我们提出了一种非侵入性的统计残差分析框架,该框架采用调整 T 和 T 磁共振弛豫参数(此处称为 MRF 残差)后具有组织特异性的磁共振指纹图谱(MRF)信号。使用西门子 7T 磁共振扫描仪采集了 11 个皮质区域(5L、5M、5Ci、7A、7P、7PC、hIP3、BA2、BA4a、BA4p 和 BA6)的 MRF 信号、定量透射磁场(B)图谱和 T 加权解剖图像来自 6 名女性参与者。对于每个体素,MRF 残差信号被计算为实际 MRF 信号演化与预计算 MRF 字典中最佳匹配 MRF 信号演化之间的差异,该字典涵盖了一系列 T、T 和 B 值。为了比较感兴趣区域之间的 MRF 残差,归一化自相关被用作基于形状的统计信号特征化方法,并且残差自相关曲线之间的欧几里得距离被用于测量区域间的相似性。在 6 名参与者的左右大脑半球的 11 个皮质区域中,所提出的 MRF 残差分析始终显示出与组织学研究一致的区域间相似性分布,这表明 MRF 残差可能包含组织微观结构信息。MRF 残差信号提供了额外的区域特异性信息,与之前用于区分活体人脑皮质区域之间微观结构差异的基于磁共振弛豫(T、T)的信息互补。所提出的方法导致了对感兴趣皮质区域的结构变化的更准确识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验