Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Neurocomputation and Neuroimaging Unit, Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Germany.
Neuroimage. 2018 Nov 15;182:184-206. doi: 10.1016/j.neuroimage.2018.02.055. Epub 2018 Mar 26.
The neocortex of the human brain is the seat of higher brain function. Modern imaging techniques, chief among them magnetic resonance imaging (MRI), allow non-invasive imaging of this important structure. Knowledge of the microstructure of the neocortex has classically come from post-mortem histological studies of human tissue, and extrapolations from invasive animal studies. From these studies, we know that the scale of important neocortical structure spans six orders of magnitude, ranging from the size of axonal diameters (microns), to the size of cortical areas responsible for integrating sensory information (centimetres). MRI presents an opportunity to move beyond classical methods, because MRI is non-invasive and MRI contrast is sensitive to neocortical microstructure over all these length scales. MRI thus allows inferences to be made about neocortical microstructure in vivo, i.e. MRI-based in vivo histology. We review recent literature that has applied and developed MRI-based in vivo histology to probe the microstructure of the human neocortex, focusing specifically on myelin, iron, and neuronal fibre mapping. We find that applications such as cortical parcellation (using [Formula: see text] maps as proxies for myelin content) and investigation of cortical iron deposition with age (using [Formula: see text] maps) are already contributing to the frontiers of knowledge in neuroscience. Neuronal fibre mapping in the cortex remains challenging in vivo, but recent improvements in diffusion MRI hold promise for exciting applications in the near future. The literature also suggests that utilising multiple complementary quantitative MRI maps could increase the specificity of inferences about neocortical microstructure relative to contemporary techniques, but that further investment in modelling is required to appropriately combine the maps. In vivo histology of human neocortical microstructure is undergoing rapid development. Future developments will improve its specificity, sensitivity, and clinical applicability, granting an ever greater ability to investigate neuroscientific and clinical questions about the human neocortex.
人类大脑的新皮层是大脑高级功能的所在地。现代成像技术,其中主要是磁共振成像(MRI),可以对这一重要结构进行非侵入性成像。新皮层微观结构的知识传统上来自于人类组织的死后组织学研究,以及从有创动物研究中推断得出。从这些研究中,我们知道重要的新皮层结构的规模跨越了六个数量级,从轴突直径(微米)的大小到负责整合感觉信息的皮质区域(厘米)的大小。MRI 提供了超越经典方法的机会,因为 MRI 是一种非侵入性的方法,MRI 对比对所有这些长度尺度上的新皮层微观结构都很敏感。因此,MRI 可以对活体新皮层微观结构进行推断,即基于 MRI 的活体组织学。我们回顾了最近应用和开发基于 MRI 的活体组织学来探测人类新皮层微观结构的文献,重点关注髓鞘、铁和神经元纤维映射。我们发现,诸如皮质分割(使用[公式:请参见文本]图谱作为髓鞘含量的代理)和随着年龄增长的皮质铁沉积研究(使用[公式:请参见文本]图谱)等应用已经为神经科学的前沿知识做出了贡献。皮质中的神经元纤维映射在活体中仍然具有挑战性,但扩散 MRI 的最新进展有望在不久的将来在应用中取得令人兴奋的突破。文献还表明,利用多个互补的定量 MRI 图谱可以增加关于新皮层微观结构的推断的特异性,相对于当代技术,但需要进一步投资建模,以适当结合图谱。人类新皮层微观结构的活体组织学正在迅速发展。未来的发展将提高其特异性、敏感性和临床适用性,使人们能够更深入地研究人类新皮层的神经科学和临床问题。