Suppr超能文献

中国工业绿色全要素能源效率及其影响因素:空间计量经济学分析。

China's industrial green total-factor energy efficiency and its influencing factors: a spatial econometric analysis.

机构信息

School of Management, Chongqing University of Technology, Chongqing, 400054, China.

School of Intellectual Property, Chongqing University of Technology, Chongqing, 400054, China.

出版信息

Environ Sci Pollut Res Int. 2022 Mar;29(13):18559-18577. doi: 10.1007/s11356-021-17040-1. Epub 2021 Oct 25.

Abstract

The sustainable development of China's economy is bottlenecked by resource shortage and environmental pollution. As the leading resource consumer and pollutant source, the industrial sector needs to improve its energy efficiency. This paper establishes a super epsilon-based measure (Super-EBM) model with bad outputs like environmental cost and evaluates the industrial green total-factor energy efficiencies (IGTFEEs) of 30 provinces in China during 2000-2017. Unlike previous research, the main contribution of this paper is to choose four environmental pollutants as bad outputs (industrial carbon dioxide, industrial sulfur dioxide, industrial chemical oxygen demand, industrial solid waste). By contrast, the previous studies mostly only take one environmental pollutant as bad output, i.e., the bad outputs are not fully measured. Then, the spatiotemporal dynamics and spatial correlations of the IGTFEEs were analyzed, and the influencing factors of IGTFEE were examined empirically with a spatial econometric model. Finally, this paper adopts generalized method of moments (GMM) to solve the endogenous problem, trying to assure the robustness of estimation results. The results show significant provincial differences in IGTFEE. Most eastern coastal provinces achieved satisfactory IGTFEEs, while most inland provinces had undesirable IGTFEEs. Eastern region achieved the highest IGTFEE, followed by central region; western region had the lowest IGTFEE. The IGTFEE improved over time in some provinces while worsened greatly in some provinces. The IGTFEE in most provinces need to be further improved. Global Moran's I values indicate that the provincial IGTFEEs were clustered in space, rather than randomly distributed. Local indication of spatial association (LISA) map reflects significant local spatial clustering of provincial IGTFEEs. In addition, IGTFEE is significantly promoted by industrial structure, technological innovation, human capital, opening-up, and energy structure yet significantly suppressed by ownership structure and environmental regulation. Considering the endogeneity, GMM results show that the estimation results of the model were robust. Specific policy recommendations include vigorously developing high-tech industries, deepening state-owned enterprises reform, diverting more funds to research and development, cultivating versatile talents, introducing environmentally-friendly foreign capital, accelerating the implementation of clean energy development strategy, and widening the fund channels of pollution control investment.

摘要

中国经济的可持续发展受到资源短缺和环境污染的制约。作为主要的资源消费者和污染物排放源,工业部门需要提高能源效率。本文建立了一个带有环境成本等不良产出的超 ε 基测度(Super-EBM)模型,并评估了 2000-2017 年中国 30 个省份的工业绿色全要素能源效率(IGTFEE)。与以往的研究不同,本文的主要贡献在于选择了四种环境污染物作为不良产出(工业二氧化碳、工业二氧化硫、工业化学需氧量、工业固体废物),而以往的研究大多只将一种环境污染物作为不良产出,即不良产出没有得到充分衡量。然后,分析了 IGTFEE 的时空动态和空间相关性,并通过空间计量经济学模型实证检验了 IGTFEE 的影响因素。最后,本文采用广义矩法(GMM)解决内生性问题,试图保证估计结果的稳健性。研究结果表明,IGTFEE 存在显著的省级差异。大多数东部沿海省份的 IGTFEE 令人满意,而大多数内陆省份的 IGTFEE 不尽如人意。东部地区的 IGTFEE 最高,其次是中部地区;西部地区的 IGTFEE 最低。在一些省份,IGTFEE 随着时间的推移而提高,而在一些省份,IGTFEE 则大幅恶化。大多数省份的 IGTFEE 需要进一步提高。全局 Moran's I 值表明,省级 IGTFEE 在空间上呈集聚分布,而不是随机分布。局部空间关联(LISA)图反映了省级 IGTFEE 的显著局部空间集聚。此外,工业结构、技术创新、人力资本、对外开放和能源结构显著促进了 IGTFEE,而所有制结构和环境监管则显著抑制了 IGTFEE。考虑到内生性,GMM 结果表明模型的估计结果具有稳健性。具体政策建议包括大力发展高科技产业,深化国有企业改革,增加研发资金投入,培养复合型人才,引进环保型外资,加快实施清洁能源发展战略,拓宽污染控制投资资金渠道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验