Suppr超能文献

纳米限域且催化的MgH自组装在具有增强氢吸附性能的三维TiC MXene折叠纳米片上。

Nanoconfined and Catalyzed MgH Self-Assembled on 3D TiC MXene Folded Nanosheets with Enhanced Hydrogen Sorption Performances.

作者信息

Zhu Wen, Ren Li, Lu Chong, Xu Hao, Sun Fengzhan, Ma Zhewen, Zou Jianxin

机构信息

National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

Shanghai Engineering Research Center of Mg Materials and Applications & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

出版信息

ACS Nano. 2021 Nov 23;15(11):18494-18504. doi: 10.1021/acsnano.1c08343. Epub 2021 Oct 26.

Abstract

MXenes are considered as potential support materials for nanoconfinement of MgH/Mg to improve the hydrogen storage properties. However, it has never been realized so far due to the stacking and oxidation problems caused by unexpected surface terminations (-OH, -O, .) on MXenes. In this study, hexadecyl trimethylammonium bromide was used to build a 3D TiCT architecture of folded nanosheets to reduce the stacking risk of flakes, and a bottom-up self-assembly strategy was successfully applied to synthesize ultradispersed MgH nanoparticles anchored on the surface of the annealed 3D TiCT (Ti-MX). The composite with a 60 wt % loading of MgH NPs, 60MgH@Ti-MX, starts to decompose at 140 °C and is capable of releasing 3.0 wt % H at 150 °C within 2.5 h. In addition, a reversible capacity up to 4.0 wt % H was still maintained after 60 cycles at 200 °C without obvious loss in kinetics. high-resolution TEM observations of the decomposition process together with other analyses revealed that the nanosize effect caused by the nanoconfinement and the multiphasic interfaces between MgH(Mg) and Ti-MX, especially the formed catalytic TiH, were main reasons accounting for the superior hydrogen sorption performances.

摘要

MXenes被认为是用于纳米限域MgH/Mg以改善储氢性能的潜在载体材料。然而,由于MXenes上意外的表面端基(-OH、-O等)导致的堆积和氧化问题,到目前为止这一目标尚未实现。在本研究中,使用十六烷基三甲基溴化铵构建了折叠纳米片的三维TiCT结构,以降低薄片的堆积风险,并成功应用自下而上的自组装策略合成了锚定在退火后的三维TiCT(Ti-MX)表面的超分散MgH纳米颗粒。负载60 wt% MgH纳米颗粒的复合材料60MgH@Ti-MX在140°C开始分解,在150°C下2.5小时内能够释放3.0 wt%的氢。此外,在200°C下循环60次后,仍保持高达4.0 wt% H的可逆容量,动力学没有明显损失。对分解过程的高分辨率透射电镜观察以及其他分析表明,纳米限域引起的纳米尺寸效应以及MgH(Mg)与Ti-MX之间的多相界面,特别是形成的催化TiH,是其优异的氢吸附性能的主要原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验