Zhao Chong, Li Chao, Liu Hui, Qiu Qing, Geng Fushan, Shen Ming, Tong Wei, Li Jingxin, Hu Bingwen
Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.
Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, P. R. China.
J Am Chem Soc. 2021 Nov 10;143(44):18652-18664. doi: 10.1021/jacs.1c08614. Epub 2021 Oct 26.
The interface stability of cathode/electrolyte for Na-ion layered oxides is tightly related to the oxidized species formed during the electrochemical process. Herein, we for the first time decipher the coexistence of (O) and trapped molecular O in the (de)sodiation process of P2-Na[LiMn]O by using advanced electron paramagnetic resonance (EPR) spectroscopy. An unstable interface of cathode/electrolyte can thus be envisaged with conventional carbonate electrolyte due to the high reactivity of the oxidized O species. We therefore introduce a highly fluorinated electrolyte to tentatively construct a stable and protective interface between P2-Na[LiMn]O and the electrolyte. As expected, an even and robust NaF-rich cathode-electrolyte interphase (CEI) film is formed in the highly fluorinated electrolyte, in sharp contrast to the nonuniform and friable organic-rich CEI formed in the conventional lowly fluorinated electrolyte. The formed fluorinated CEI film can significantly mitigate the local structural degeneration of P2-Na[LiMn]O by refraining the irreversible Li/Mn dissolutions and O release, endowing a highly reversible oxygen redox reaction. Resultantly, P2-Na[LiMn]O in highly fluorinated electrolyte achieves a high Coulombic efficiency (CE) of >99% and an impressive cycling stability in the voltage range of 2.0-4.5 V (vs Na/Na) under room temperature (147.6 mAh g, 100 cycles) and at 45 °C (142.5 mAh g, 100 cycles). This study highlights the profound impact of oxidized oxygen species on the interfacial stability of cathode/electrolyte and carves a new path for building stable interface and enabling highly stable oxygen redox reaction.
钠离子层状氧化物的阴极/电解质界面稳定性与电化学过程中形成的氧化物种密切相关。在此,我们首次利用先进的电子顺磁共振(EPR)光谱,解析了P2-Na[LiMn]O脱/嵌钠过程中(O)和捕获分子氧的共存情况。由于氧化O物种的高反应活性,因此可以设想常规碳酸盐电解质会导致阴极/电解质界面不稳定。因此,我们引入了一种高度氟化的电解质,试图在P2-Na[LiMn]O和电解质之间构建一个稳定且具有保护作用的界面。正如预期的那样,在高度氟化的电解质中形成了均匀且坚固的富含NaF的阴极-电解质界面(CEI)膜,这与在传统低氟化电解质中形成的不均匀且易碎的富含有机物的CEI形成了鲜明对比。形成的氟化CEI膜可以通过抑制不可逆的Li/Mn溶解和O释放,显著减轻P2-Na[LiMn]O的局部结构退化,实现高度可逆的氧氧化还原反应。结果,在室温(147.6 mAh g,100次循环)和45°C(142.5 mAh g,100次循环)下,高度氟化电解质中的P2-Na[LiMn]O在2.0-4.5 V(vs Na/Na)电压范围内实现了>99%的高库仑效率(CE)和令人印象深刻的循环稳定性。这项研究突出了氧化氧物种对阴极/电解质界面稳定性的深远影响,并为构建稳定界面和实现高度稳定的氧氧化还原反应开辟了一条新途径。