Suppr超能文献

强磁交换相互作用和离域的锰-氧态使钠离子阴极P2-Na[MgMn]O具备高电压容量。

Strong Magnetic Exchange Interactions and Delocalized Mn-O States Enable High-Voltage Capacity in the Na-Ion Cathode P2-Na[MgMn]O.

作者信息

Bassey Euan N, Nguyen Howie, Insinna Teresa, Lee Jeongjae, Barra Anne-Laure, Cibin Giannantonio, Bencok Peter, Clément Raphaële J, Grey Clare P

机构信息

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106-5050, United States.

出版信息

Chem Mater. 2024 Sep 23;36(19):9493-9515. doi: 10.1021/acs.chemmater.4c01320. eCollection 2024 Oct 8.

Abstract

The increased capacity offered by oxygen-redox active cathode materials for rechargeable lithium- and sodium-ion batteries (LIBs and NIBs, respectively) offers a pathway to the next generation of high-gravimetric-capacity cathodes for use in devices, transportation and on the grid. Many of these materials, however, are plagued with voltage fade, voltage hysteresis and O loss, the origins of which can be traced back to changes in their electronic and chemical structures on cycling. Developing a detailed understanding of these changes is critical to mitigating these cathodes' poor performance. In this work, we present an analysis of the redox mechanism of P2-Na[MgMn]O, a layered NIB cathode whose high capacity has previously been attributed to trapped O molecules. We examine a variety of charge compensation scenarios, calculate their corresponding densities of states and spectroscopic properties, and systematically compare the results to experimental data: Mg and O nuclear magnetic resonance (NMR) spectroscopy, X-band and high-frequency electron paramagnetic resonance (EPR), magnetometry, and O and Mn -edge X-ray Absorption Spectroscopy (XAS) and X-ray Absorption Near Edge Spectroscopy (XANES). a process of elimination, we suggest that the mechanism for O redox in this material is dominated by a process that involves the formation of strongly antiferromagnetic, delocalized Mn-O states which form after Mg migration at high voltages. Our results primarily rely on noninvasive techniques that are vital to understanding the electronic structure of metastable cycled cathode samples.

摘要

氧氧化还原活性阴极材料分别为可充电锂离子电池和钠离子电池(LIBs和NIBs)提供了更高的容量,这为下一代用于设备、交通运输和电网的高重量比容量阴极开辟了一条途径。然而,这些材料中的许多都存在电压衰减、电压滞后和氧损失的问题,其根源可追溯到循环过程中它们的电子和化学结构的变化。深入了解这些变化对于缓解这些阴极的不良性能至关重要。在这项工作中,我们对P2-Na[MgMn]O的氧化还原机制进行了分析,P2-Na[MgMn]O是一种层状NIB阴极,其高容量此前被归因于捕获的氧分子。我们研究了各种电荷补偿情况,计算了它们相应的态密度和光谱性质,并将结果与实验数据进行了系统比较:镁和氧核磁共振(NMR)光谱、X波段和高频电子顺磁共振(EPR)、磁强计以及氧和锰边缘X射线吸收光谱(XAS)和X射线吸收近边光谱(XANES)。通过排除过程,我们认为这种材料中氧氧化还原的机制主要由一个过程主导,该过程涉及在高电压下镁迁移后形成强反铁磁、离域的Mn-O态。我们的结果主要依赖于非侵入性技术,这些技术对于理解亚稳态循环阴极样品的电子结构至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a37/11467838/dad79b551220/cm4c01320_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验