IEEE Trans Cybern. 2022 Nov;52(11):12464-12478. doi: 10.1109/TCYB.2021.3116964. Epub 2022 Oct 17.
This work proposes a scalable gamma non-negative matrix network (SGNMN), which uses a Poisson randomized Gamma factor analysis to obtain the neurons of the first layer of a network. These neurons obey Gamma distribution whose shape parameter infers the neurons of the next layer of the network and their related weights. Upsampling the connection weights follows a Dirichlet distribution. Downsampling hidden units obey Gamma distribution. This work performs up-down sampling on each layer to learn the parameters of SGNMN. Experimental results indicate that the width and depth of SGNMN are closely related, and a reasonable network structure for accurately detecting brain fatigue through functional near-infrared spectroscopy can be obtained by considering network width, depth, and parameters.
本文提出了一种可扩展的伽马非负矩阵网络(SGNMN),它使用泊松随机伽马因子分析来获得网络第一层的神经元。这些神经元服从伽马分布,其形状参数推断出网络的下一层神经元及其相关权重。连接权重的上采样遵循狄利克雷分布。下采样隐藏单元服从伽马分布。本文在每一层进行上下采样,以学习 SGNMN 的参数。实验结果表明,SGNMN 的宽度和深度密切相关,通过考虑网络宽度、深度和参数,可以得到一种合理的网络结构,通过功能近红外光谱准确检测大脑疲劳。