Suppr超能文献

基于 Gamma 驱动的可扩展多层网络的功能近红外光谱脑负荷检测

Scalable Gamma-Driven Multilayer Network for Brain Workload Detection Through Functional Near-Infrared Spectroscopy.

出版信息

IEEE Trans Cybern. 2022 Nov;52(11):12464-12478. doi: 10.1109/TCYB.2021.3116964. Epub 2022 Oct 17.

Abstract

This work proposes a scalable gamma non-negative matrix network (SGNMN), which uses a Poisson randomized Gamma factor analysis to obtain the neurons of the first layer of a network. These neurons obey Gamma distribution whose shape parameter infers the neurons of the next layer of the network and their related weights. Upsampling the connection weights follows a Dirichlet distribution. Downsampling hidden units obey Gamma distribution. This work performs up-down sampling on each layer to learn the parameters of SGNMN. Experimental results indicate that the width and depth of SGNMN are closely related, and a reasonable network structure for accurately detecting brain fatigue through functional near-infrared spectroscopy can be obtained by considering network width, depth, and parameters.

摘要

本文提出了一种可扩展的伽马非负矩阵网络(SGNMN),它使用泊松随机伽马因子分析来获得网络第一层的神经元。这些神经元服从伽马分布,其形状参数推断出网络的下一层神经元及其相关权重。连接权重的上采样遵循狄利克雷分布。下采样隐藏单元服从伽马分布。本文在每一层进行上下采样,以学习 SGNMN 的参数。实验结果表明,SGNMN 的宽度和深度密切相关,通过考虑网络宽度、深度和参数,可以得到一种合理的网络结构,通过功能近红外光谱准确检测大脑疲劳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验