Suppr超能文献

石墨烯纳米带中的电致狄拉克费米子

Electrically Induced Dirac Fermions in Graphene Nanoribbons.

作者信息

Pizzochero Michele, Tepliakov Nikita V, Mostofi Arash A, Kaxiras Efthimios

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Departments of Materials and Physics, Imperial College London, London SW7 2AZ, United Kingdom.

出版信息

Nano Lett. 2021 Nov 10;21(21):9332-9338. doi: 10.1021/acs.nanolett.1c03596. Epub 2021 Oct 29.

Abstract

Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical codopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac semimetallic phases in otherwise semiconducting graphene-like nanoribbons.

摘要

石墨烯纳米带被广泛认为是下一代碳基器件的有前途的构建模块。其潜在应用的一个关键问题是它们的电子结构是否可以外部控制。在这里,我们将简单的模型哈密顿量与广泛的第一性原理计算相结合,以研究扶手椅型石墨烯纳米带对横向电场的响应。这种电场可以通过横向对纳米带进行门控或沿边缘掺入双极化学共掺杂剂来实现。我们发现,该电场会诱导半导体到半金属的转变,半金属相具有沿扶手椅边缘传播的零能量狄拉克费米子。转变发生在与纳米带宽度成反比的临界场处。这些发现对于包括硅烯和锗烯纳米带在内的IV族蜂窝晶格是普遍适用的,与边缘终止类型无关。总体而言,我们的结果为在其他方面为半导体类石墨烯纳米带中电工程狄拉克半金属相创造了新机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验